BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 11978828)

  • 21. Introduction of a neurotrophin-3 transgene into muscle selectively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3.
    Wright DE; Zhou L; Kucera J; Snider WD
    Neuron; 1997 Sep; 19(3):503-17. PubMed ID: 9331344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peripheral target specification of synaptic connectivity of muscle spindle sensory neurons with spinal motoneurons.
    Wenner P; Frank E
    J Neurosci; 1995 Dec; 15(12):8191-8. PubMed ID: 8613753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional regulation of myotube fate specification and intrafusal muscle fiber morphogenesis.
    Albert Y; Whitehead J; Eldredge L; Carter J; Gao X; Tourtellotte WG
    J Cell Biol; 2005 Apr; 169(2):257-68. PubMed ID: 15837802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections.
    Mendelsohn AI; Simon CM; Abbott LF; Mentis GZ; Jessell TM
    Neuron; 2015 Jul; 87(1):111-23. PubMed ID: 26094608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuregulin1 signaling targets SRF and CREB and activates the muscle spindle-specific gene Egr3 through a composite SRF-CREB-binding site.
    Herndon CA; Ankenbruck N; Lester B; Bailey J; Fromm L
    Exp Cell Res; 2013 Mar; 319(5):718-30. PubMed ID: 23318675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postnatal regulation of limb proprioception by muscle-derived neurotrophin-3.
    Taylor MD; Vancura R; Patterson CL; Williams JM; Riekhof JT; Wright DE
    J Comp Neurol; 2001 Apr; 432(2):244-58. PubMed ID: 11241389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurotrophin-3 and trkC in muscle are non-essential for the development of mouse muscle spindles.
    Kucera J; Fan G; Walro J; Copray S; Tessarollo L; Jaenisch R
    Neuroreport; 1998 Mar; 9(5):905-9. PubMed ID: 9579688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low grip strength, impaired tongue force and hyperactivity induced by overexpression of neurotrophin-3 in mouse skeletal muscle.
    Fowler SC; Zarcone TJ; Chen R; Taylor MD; Wright DE
    Int J Dev Neurosci; 2002; 20(3-5):303-8. PubMed ID: 12175867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limb proprioceptive deficits without neuronal loss in transgenic mice overexpressing neurotrophin-3 in the developing nervous system.
    Ringstedt T; Kucera J; Lendahl U; Ernfors P; Ibáñez CF
    Development; 1997 Jul; 124(13):2603-13. PubMed ID: 9217002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of a full complement of cranial proprioceptors requires multiple neurotrophins.
    Fan G; Copray S; Huang EJ; Jones K; Yan Q; Walro J; Jaenisch R; Kucera J
    Dev Dyn; 2000 Jun; 218(2):359-70. PubMed ID: 10842362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of lesions in the neural crest on the formation of synaptic connexions in the embryonic chick spinal cord.
    Eide AL; Jansen JK; Ribchester RR
    J Physiol; 1982 Mar; 324():453-78. PubMed ID: 6212673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons.
    Krylova O; Herreros J; Cleverley KE; Ehler E; Henriquez JP; Hughes SM; Salinas PC
    Neuron; 2002 Sep; 35(6):1043-56. PubMed ID: 12354395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further evidence for synaptic actions of muscle spindle secondaries in the middle lumbar segments of the cat spinal cord.
    Harrison PJ; Jami L; Jankowska E
    J Physiol; 1988 Aug; 402():671-86. PubMed ID: 2976827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proprioceptive afferents survive in the masseter muscle of trkC knockout mice.
    Matsuo S; Ichikawa H; Silos-Santiago I; Arends JJ; Henderson TA; Kiyomiya K; Kurebe M; Jacquin MF
    Neuroscience; 2000; 95(1):209-16. PubMed ID: 10619477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the distribution of information from muscle spindles in the spinal cord; how much does it depend on random factors?
    Jankowska E
    J Anat; 2015 Aug; 227(2):184-93. PubMed ID: 26179024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3.
    Friese A; Kaltschmidt JA; Ladle DR; Sigrist M; Jessell TM; Arber S
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13588-93. PubMed ID: 19651609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury.
    Vincent JA; Nardelli P; Gabriel HM; Deardorff AS; Cope TC
    J Anat; 2015 Aug; 227(2):221-30. PubMed ID: 26047324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of chemosensitive afferents from multifidus muscle does not sensitize multifidus muscle spindles to vertebral loads in the lumbar spine of the cat.
    Kang YM; Wheeler JD; Pickar JG
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1528-36. PubMed ID: 11462081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the specificity of sensory reinnervation of cat skeletal muscle.
    Collins WF; Mendell LM; Munson JB
    J Physiol; 1986 Jun; 375():587-609. PubMed ID: 2948009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.