BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 11978854)

  • 1. Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning.
    Blank T; Nijholt I; Eckart K; Spiess J
    J Neurosci; 2002 May; 22(9):3788-94. PubMed ID: 11978854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning.
    Blank T; Nijholt I; Grammatopoulos DK; Randeva HS; Hillhouse EW; Spiess J
    J Neurosci; 2003 Jan; 23(2):700-7. PubMed ID: 12533630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonatal isolation accelerates the developmental switch in the signalling cascades for long-term potentiation induction.
    Huang CC; Chou PH; Yang CH; Hsu KS
    J Physiol; 2005 Dec; 569(Pt 3):789-99. PubMed ID: 16223759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The corticotropin-releasing factor receptor 1 antagonist CP-154,526 reverses stress-induced learning deficits in mice.
    Blank T; Nijholt I; Vollstaedt S; Spiess J
    Behav Brain Res; 2003 Jan; 138(2):207-13. PubMed ID: 12527451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2.
    Radulovic J; Rühmann A; Liepold T; Spiess J
    J Neurosci; 1999 Jun; 19(12):5016-25. PubMed ID: 10366634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible, pharmacogenetic approaches to the study of learning and memory.
    Ohno M; Frankland PW; Chen AP; Costa RM; Silva AJ
    Nat Neurosci; 2001 Dec; 4(12):1238-43. PubMed ID: 11713472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP.
    Bortolotto ZA; Collingridge GL
    Neuropharmacology; 1998; 37(4-5):535-44. PubMed ID: 9704994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.
    Schmitt JM; Guire ES; Saneyoshi T; Soderling TR
    J Neurosci; 2005 Feb; 25(5):1281-90. PubMed ID: 15689566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training.
    Scharf MT; Woo NH; Lattal KM; Young JZ; Nguyen PV; Abel T
    J Neurophysiol; 2002 Jun; 87(6):2770-7. PubMed ID: 12037179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
    Sanhueza M; McIntyre CC; Lisman JE
    J Neurosci; 2007 May; 27(19):5190-9. PubMed ID: 17494705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region specific gene expression profile in mouse brain after chronic corticotropin releasing factor receptor 1 activation: the novel role for diazepam binding inhibitor in contextual fear conditioning.
    Sherrin T; Blank T; Saravana R; Rayner M; Spiess J; Todorovic C
    Neuroscience; 2009 Aug; 162(1):14-22. PubMed ID: 19362130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of calcium-calmodulin kinase II in three forms of synaptic plasticity.
    Stevens CF; Tonegawa S; Wang Y
    Curr Biol; 1994 Aug; 4(8):687-93. PubMed ID: 7953554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate.
    Brown GP; Blitzer RD; Connor JH; Wong T; Shenolikar S; Iyengar R; Landau EM
    J Neurosci; 2000 Nov; 20(21):7880-7. PubMed ID: 11050107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct synaptic loci of Ca2+/calmodulin-dependent protein kinase II necessary for long-term potentiation and depression.
    Stanton PK; Gage AT
    J Neurophysiol; 1996 Sep; 76(3):2097-101. PubMed ID: 8890320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient removal of extracellular Mg(2+) elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation.
    Hsu KS; Ho WC; Huang CC; Tsai JJ
    J Neurophysiol; 2000 Sep; 84(3):1279-88. PubMed ID: 10980002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory.
    Park J; Chávez AE; Mineur YS; Morimoto-Tomita M; Lutzu S; Kim KS; Picciotto MR; Castillo PE; Tomita S
    Neuron; 2016 Oct; 92(1):75-83. PubMed ID: 27667007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn.
    Yang HW; Hu XD; Zhang HM; Xin WJ; Li MT; Zhang T; Zhou LJ; Liu XG
    J Neurophysiol; 2004 Mar; 91(3):1122-33. PubMed ID: 14586032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitogen-activated protein kinase signaling in the hippocampus and its modulation by corticotropin-releasing factor receptor 2: a possible link between stress and fear memory.
    Sananbenesi F; Fischer A; Schrick C; Spiess J; Radulovic J
    J Neurosci; 2003 Dec; 23(36):11436-43. PubMed ID: 14673008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro.
    Ahmed T; Frey JU
    Neuropharmacology; 2005 Sep; 49(4):477-92. PubMed ID: 16005911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses.
    Rodrigues SM; Farb CR; Bauer EP; LeDoux JE; Schafe GE
    J Neurosci; 2004 Mar; 24(13):3281-8. PubMed ID: 15056707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.