BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11979400)

  • 1. Lipid peroxidation and protein modification in a mouse model of chronic iron overload.
    Sochaski MA; Bartfay WJ; Thorpe SR; Baynes JW; Bartfay E; Lehotay DC; Liu PP
    Metabolism; 2002 May; 51(5):645-51. PubMed ID: 11979400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload.
    Houglum K; Filip M; Witztum JL; Chojkier M
    J Clin Invest; 1990 Dec; 86(6):1991-8. PubMed ID: 2123889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein adducts of malondialdehyde and 4-hydroxynonenal in livers of iron loaded rats: quantitation and localization.
    Khan MF; Wu X; Tipnis UR; Ansari GA; Boor PJ
    Toxicology; 2002 May; 173(3):193-201. PubMed ID: 11960672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of liver microsomal MDA-protein adducts in mice with chronic dietary iron overload.
    Valerio LG; Petersen DR
    Toxicol Lett; 1998 Sep; 98(1-2):31-9. PubMed ID: 9776559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dose-dependent effects of chronic iron overload on the production of oxygen free radicals and vitamin E concentrations in the liver of a murine model.
    McCullough KD; Bartfay WJ
    Biol Res Nurs; 2007 Apr; 8(4):300-4. PubMed ID: 17456591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatotoxicity induced by iron overload and alcohol. Studies on the role of chelatable iron, cytochrome P450 2E1 and lipid peroxidation.
    Stål P; Johansson I; Ingelman-Sundberg M; Hagen K; Hultcrantz R
    J Hepatol; 1996 Oct; 25(4):538-46. PubMed ID: 8912154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions.
    Requena JR; Fu MX; Ahmed MU; Jenkins AJ; Lyons TJ; Thorpe SR
    Nephrol Dial Transplant; 1996; 11 Suppl 5():48-53. PubMed ID: 9044307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prooxidant-initiated lipid peroxidation in isolated rat hepatocytes: detection of 4-hydroxynonenal- and malondialdehyde-protein adducts.
    Hartley DP; Kroll DJ; Petersen DR
    Chem Res Toxicol; 1997 Aug; 10(8):895-905. PubMed ID: 9282839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of glutathione S-transferase isozyme-specific induction and lipid peroxidation in two inbred strains of mice subjected to chronic dietary iron overload.
    Tjalkens RB; Valerio LG; Awasthi YC; Petersen DR
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):174-81. PubMed ID: 9705901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute iron overload and oxidative stress in brain.
    Piloni NE; Fermandez V; Videla LA; Puntarulo S
    Toxicology; 2013 Dec; 314(1):174-82. PubMed ID: 24120471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the protective effects of Katha (Heartwood Extract of Acacia catechu) in liver damage induced by iron overload.
    Hazra B; Sarkar R; Ghate NB; Chaudhuri D; Mandal N
    J Environ Pathol Toxicol Oncol; 2013; 32(3):229-40. PubMed ID: 24266409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaction of hepatic thioredoxin and glutathione systems in iron overload-induced oxidative stress.
    Sönmez Aydın F; Hukkamlı B; Budak H
    J Biochem Mol Toxicol; 2021 Apr; 35(4):e22704. PubMed ID: 33393188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes.
    Sampaio AF; Silva M; Dornas WC; Costa DC; Silva ME; Dos Santos RC; de Lima WG; Pedrosa ML
    Biometals; 2014 Apr; 27(2):349-61. PubMed ID: 24549594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary supplementation of baicalin and quercetin attenuates iron overload induced mouse liver injury.
    Zhang Y; Li H; Zhao Y; Gao Z
    Eur J Pharmacol; 2006 Mar; 535(1-3):263-9. PubMed ID: 16527270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload.
    Pardo Andreu GL; Inada NM; Vercesi AE; Curti C
    Arch Toxicol; 2009 Jan; 83(1):47-53. PubMed ID: 18560806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Milk whey protein decreases oxygen free radical production in a murine model of chronic iron-overload cardiomyopathy.
    Bartfay WJ; Davis MT; Medves JM; Lugowski S
    Can J Cardiol; 2003 Sep; 19(10):1163-8. PubMed ID: 14532942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effects of baicalin and quercetin on an iron-overloaded mouse: comparison of liver, kidney and heart tissues.
    Zhang Y; Gao Z; Liu J; Xu Z
    Nat Prod Res; 2011 Jul; 25(12):1150-60. PubMed ID: 21740280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein.
    Requena JR; Fu MX; Ahmed MU; Jenkins AJ; Lyons TJ; Baynes JW; Thorpe SR
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):317-25. PubMed ID: 9078279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ebselen decreases oxygen free radical production and iron concentrations in the hearts of chronically iron-overloaded mice.
    Davis MT; Bartfay WJ
    Biol Res Nurs; 2004 Jul; 6(1):37-45. PubMed ID: 15186706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron metabolism and oxidative stress during acute and chronic phases of experimental inflammation: effect of iron-dextran and deferoxamine.
    Muntané J; Puig-Parellada P; Mitjavila MT
    J Lab Clin Med; 1995 Nov; 126(5):435-43. PubMed ID: 7595028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.