BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11979423)

  • 1. Inhibition of acetylcholinesterase by physostigmine analogs: conformational mobility of cysteine loop due to the steric effect of the alkyl chain.
    Gavuzzo E; Pomponi M
    J Biochem Mol Toxicol; 2002; 16(2):64-9. PubMed ID: 11979423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities.
    Zhan ZJ; Bian HL; Wang JW; Shan WG
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1532-4. PubMed ID: 20144867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis and evaluation of carbamate-modified (-)-N(1)-phenethylnorphysostigmine derivatives as selective butyrylcholinesterase inhibitors.
    Takahashi J; Hijikuro I; Kihara T; Murugesh MG; Fuse S; Tsumura Y; Akaike A; Niidome T; Takahashi T; Sugimoto H
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1721-3. PubMed ID: 20137941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer's disease.
    Yu Q; Holloway HW; Utsuki T; Brossi A; Greig NH
    J Med Chem; 1999 May; 42(10):1855-61. PubMed ID: 10346939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-based 3D-QSAR studies of physostigmine analogues as acetylcholinesterase inhibitors.
    Ul-Haq Z; Mahmood U; Jehangir B
    Chem Biol Drug Des; 2009 Dec; 74(6):571-81. PubMed ID: 19843075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of phenserine analogues and evaluation of their cholinesterase inhibitory activities.
    Shinada M; Narumi F; Osada Y; Matsumoto K; Yoshida T; Higuchi K; Kawasaki T; Tanaka H; Satoh M
    Bioorg Med Chem; 2012 Aug; 20(16):4901-14. PubMed ID: 22831800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total syntheses and anticholinesterase activities of (3aS)-N(8)-norphysostigmine, (3aS)-N(8)-norphenserine, their antipodal isomers, and other N(8)-substituted analogues.
    Yu QS; Pei XF; Holloway HW; Greig NH; Brossi A
    J Med Chem; 1997 Aug; 40(18):2895-901. PubMed ID: 9288171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of TRP84 in catalytic power and the specificity of AChE.
    Pomponi M; Sacchi S; Colella A; Patamia M; Marta M
    Biophys Chem; 1998 Jun; 72(3):239-46. PubMed ID: 9691268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbolic mixed-type inhibition of acetylcholinesterase by tetracyclic thienopyrimidines.
    Tanarro CM; Gütschow M
    J Enzyme Inhib Med Chem; 2011 Jun; 26(3):350-8. PubMed ID: 20807084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of AChE: structure-activity relationship among conformational transition of Trp84 and biomolecular rate constant.
    Bertonati C; Marta M; Patamia M; Colella A; Pomponi M
    J Enzyme Inhib; 2000; 15(6):547-56. PubMed ID: 11140610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physostigmine analogs anticholinesterases: effects of the lengthening of the N-carbamic chain on the inhibition kinetics.
    Marta M; Gatta F; Pomponi M
    Biochim Biophys Acta; 1992 Apr; 1120(3):262-6. PubMed ID: 1576152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of electronic structures of physostigmine analogs.
    Hu ZJ; Jiang HL; Chen JZ; Chen KX; Ji RY
    Zhongguo Yao Li Xue Bao; 1998 Jul; 19(4):322-6. PubMed ID: 10375776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative QSAR analysis of acetylcholinesterase inhibitors currently studied for the treatment of Alzheimer's disease.
    Recanatini M; Cavalli A; Hansch C
    Chem Biol Interact; 1997 Aug; 105(3):199-228. PubMed ID: 9291997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis, evaluation and QSAR analysis of N(1)-substituted norcymserine derivatives as selective butyrylcholinesterase inhibitors.
    Takahashi J; Hijikuro I; Kihara T; Murugesh MG; Fuse S; Kunimoto R; Tsumura Y; Akaike A; Niidome T; Okuno Y; Takahashi T; Sugimoto H
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1718-20. PubMed ID: 20137934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl analogues of the experimental Alzheimer drug phenserine: synthesis and structure/activity relationships for acetyl- and butyrylcholinesterase inhibitory action.
    Yu Q; Holloway HW; Flippen-Anderson JL; Hoffman B; Brossi A; Greig NH
    J Med Chem; 2001 Nov; 44(24):4062-71. PubMed ID: 11708910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenserine Axonyx.
    Thatte U
    Curr Opin Investig Drugs; 2005 Jul; 6(7):729-39. PubMed ID: 16044670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of inhibition of acetylcholinesterase in the presence of acetonitrile.
    Pietsch M; Christian L; Inhester T; Petzold S; Gütschow M
    FEBS J; 2009 Apr; 276(8):2292-307. PubMed ID: 19292865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntheses and anticholinesterase activities of (3aS)-N1, N8-bisnorphenserine, (3aS)-N1,N8-bisnorphysostigmine, their antipodal isomers, and other potential metabolites of phenserine.
    Yu Q; Greig NH; Holloway HW; Brossi A
    J Med Chem; 1998 Jun; 41(13):2371-9. PubMed ID: 9632370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholinesterase inhibition by pitofenone: a spasmolytic compound.
    Punekar NS; Kulkarni AV
    Biotechnol Appl Biochem; 1991 Dec; 14(3):378-82. PubMed ID: 1777122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cholinesterase inhibition in vitro by huperzine analogs.
    Tang XC; Xu H; Feng J; Zhou TX; Liu JS
    Zhongguo Yao Li Xue Bao; 1994 Mar; 15(2):107-10. PubMed ID: 8010100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.