BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 11979433)

  • 1. Assessment of genomic instability in breast cancer and uveal melanoma by random amplified polymorphic DNA analysis.
    Papadopoulos S; Benter T; Anastassiou G; Pape M; Gerhard S; Bornfeld N; Ludwig WD; Dörken B
    Int J Cancer; 2002 May; 99(2):193-200. PubMed ID: 11979433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of mutation(s) or polymorphic loci in the genome of experimental animal and human cancer tissues by RAPD/AP-PCR depend on DNA polymerase.
    Singh KP; Roy D
    Int J Oncol; 1999 Apr; 14(4):753-8. PubMed ID: 10087325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of diagnostic SCAR markers for genomic DNA amplifications in breast carcinoma by DNA cloning of high-GC RAMP-PCR fragments.
    Fu S; Cheng J; Wei C; Yang L; Xiao X; Zhang D; Stewart MD; Fu J
    Oncotarget; 2017 Jul; 8(27):43866-43877. PubMed ID: 28410206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of genomic instability in lung cancer tissues by random amplified polymorphic DNA analysis.
    Ong TM; Song B; Qian HW; Wu ZL; Whong WZ
    Carcinogenesis; 1998 Jan; 19(1):233-5. PubMed ID: 9472718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel breast tumor-specific mutation(s) in the q11.2 region of chromosome 17 by RAPD/AP-PCR fingerprinting.
    Singh KP; Roy D
    Gene; 2001 May; 269(1-2):33-43. PubMed ID: 11376935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of p16 (CDKN2/MTS-1/INK4A) alterations in primary sporadic uveal melanoma.
    Merbs SL; Sidransky D
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):779-83. PubMed ID: 10067984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic hybridization in the detection of DNA copy number abnormalities in uveal melanoma.
    Gordon KB; Thompson CT; Char DH; O'Brien JM; Kroll S; Ghazvini S; Gray JW
    Cancer Res; 1994 Sep; 54(17):4764-8. PubMed ID: 8062277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices.
    Liu W; Yang YS; Li PJ; Zhou QX; Xie LJ; Han YP
    J Hazard Mater; 2009 Jan; 161(2-3):878-83. PubMed ID: 18502577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma.
    Aalto Y; Eriksson L; Seregard S; Larsson O; Knuutila S
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):313-7. PubMed ID: 11157859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Muscle pigment epithelium-derived factor gene associating with tumorigenesis of B16 melanoma].
    Li S; Chen Y; Wei H
    Zhonghua Bing Li Xue Za Zhi; 2001 Aug; 30(4):281-4. PubMed ID: 11758218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic investigations of posterior uveal melanoma.
    Hovland PG; Trempe C
    Semin Ophthalmol; 2005; 20(4):231-8. PubMed ID: 16352494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrophosphorolysis detects B-RAF mutations in primary uveal melanoma.
    Maat W; Kilic E; Luyten GP; de Klein A; Jager MJ; Gruis NA; Van der Velden PA
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):23-7. PubMed ID: 18172070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation.
    Gillings M; Holley M
    Electrophoresis; 1997 Aug; 18(9):1512-8. PubMed ID: 9378113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes.
    Kucherlapati M
    BMC Cancer; 2018 Aug; 18(1):818. PubMed ID: 30107825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic study of familial uveal melanoma: association of uveal and cutaneous melanoma with cutaneous and ocular nevi.
    Smith JH; Padnick-Silver L; Newlin A; Rhodes K; Rubinstein WS
    Ophthalmology; 2007 Apr; 114(4):774-9. PubMed ID: 17207529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of melanocortin-1 receptor gene variants in uveal melanoma patients.
    Metzelaar-Blok JA; ter Huurne JA; Hurks HM; Keunen JE; Jager MJ; Gruis NA
    Invest Ophthalmol Vis Sci; 2001 Aug; 42(9):1951-4. PubMed ID: 11481256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Male-specific band in random amplified microsatellite polymorphism fingerprints of Holstein cattle.
    Horng YM; Huang MC
    Proc Natl Sci Counc Repub China B; 2000 Jan; 24(1):41-6. PubMed ID: 10786938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review.
    Atienzar FA; Jha AN
    Mutat Res; 2006; 613(2-3):76-102. PubMed ID: 16979375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of selected genes in the TGFbeta, Wnt, pRb, and p53 pathways in primary uveal melanoma.
    Edmunds SC; Kelsell DP; Hungerford JL; Cree IA
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2845-51. PubMed ID: 12202501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased p21-activated kinase-1 expression is associated with invasive potential in uveal melanoma.
    Pavey S; Zuidervaart W; van Nieuwpoort F; Packer L; Jager M; Gruis N; Hayward N
    Melanoma Res; 2006 Aug; 16(4):285-96. PubMed ID: 16845324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.