BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11979563)

  • 1. Four-angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo.
    Bottomley PA; Ouwerkerk R; Lee RF; Weiss RG
    Magn Reson Med; 2002 May; 47(5):850-63. PubMed ID: 11979563
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Wang CY; Liu Y; Huang S; Griswold MA; Seiberlich N; Yu X
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 28915341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts.
    Schär M; Gabr RE; El-Sharkawy AM; Steinberg A; Bottomley PA; Weiss RG
    J Cardiovasc Magn Reson; 2015 Aug; 17(1):70. PubMed ID: 26253320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On neglecting chemical exchange effects when correcting in vivo (31)P MRS data for partial saturation.
    Ouwerkerk R; Bottomley PA
    J Magn Reson; 2001 Feb; 148(2):425-35. PubMed ID: 11237649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine kinase rate constant in the human heart at 7T with 1D-ISIS/2D CSI localization.
    Bashir A; Zhang J; Denney TS
    PLoS One; 2020; 15(3):e0229933. PubMed ID: 32191723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility and repeatability of localized (31) P-MRS four-angle saturation transfer (FAST) of the human gastrocnemius muscle using a surface coil at 7 T.
    Tušek Jelenc M; Chmelík M; Bogner W; Krššák M; Trattnig S; Valkovič L
    NMR Biomed; 2016 Jan; 29(1):57-65. PubMed ID: 26684051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy.
    Gabr RE; Weiss RG; Bottomley PA
    J Magn Reson; 2008 Apr; 191(2):248-58. PubMed ID: 18226939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correctly accounting for radiofrequency spillover in saturation transfer experiments: application to measurement of the creatine kinase reaction rate in human forearm muscle.
    Horská A; Spencer GS
    MAGMA; 1997 Jun; 5(2):159-63. PubMed ID: 9268080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla.
    Bresnen A; Duong TQ
    Magn Reson Med; 2015 Feb; 73(2):726-30. PubMed ID: 24523049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.
    Clarke WT; Robson MD; Neubauer S; Rodgers CT
    Magn Reson Med; 2017 Jul; 78(1):20-32. PubMed ID: 27579566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study.
    Bashir A; Gropler R
    NMR Biomed; 2014 Jun; 27(6):663-71. PubMed ID: 24706347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics.
    Schär M; El-Sharkawy AM; Weiss RG; Bottomley PA
    Magn Reson Med; 2010 Jun; 63(6):1493-501. PubMed ID: 20512852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP production rate via creatine kinase or ATP synthase in vivo: a novel superfast magnetization saturation transfer method.
    Xiong Q; Du F; Zhu X; Zhang P; Suntharalingam P; Ippolito J; Kamdar FD; Chen W; Zhang J
    Circ Res; 2011 Mar; 108(6):653-63. PubMed ID: 21293002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of spin-lattice relaxation times and chemical exchange rates in multiple-site systems using progressive saturation.
    Galbán CJ; Spencer RG
    Magn Reson Med; 2007 Jul; 58(1):8-18. PubMed ID: 17659623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional mapping of the creatine kinase enzyme reaction rate in muscles of the lower leg.
    Parasoglou P; Xia D; Chang G; Convit A; Regatte RR
    NMR Biomed; 2013 Sep; 26(9):1142-51. PubMed ID: 23436474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-dimensional image-selected in vivo spectroscopy localized phosphorus saturation transfer at 7T.
    Valkovič L; Bogner W; Gajdošík M; Považan M; Kukurová IJ; Krššák M; Gruber S; Frollo I; Trattnig S; Chmelík M
    Magn Reson Med; 2014 Dec; 72(6):1509-15. PubMed ID: 24470429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphocreatine and creatine kinase in energetic metabolism of the porcine carotid artery.
    Clark JF; Dillon PF
    J Vasc Res; 1995; 32(1):24-30. PubMed ID: 7873707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.