BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11979563)

  • 41. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of creatine kinase reaction rate in mouse hindlimb using phosphorus-31 magnetic resonance spectroscopic fingerprinting.
    Kim K; Gu Y; Wang CY; Clifford B; Huang S; Liang ZP; Yu X
    NMR Biomed; 2021 Feb; 34(2):e4435. PubMed ID: 33111456
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Creatine kinase-catalyzed reaction rate in the cyanide-poisoned mouse brain.
    Holtzman D; Offutt M; Tsuji M; Neuringer LJ; Jacobs D
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):153-61. PubMed ID: 8417004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural-network classification of cardiac disease from
    Solaiyappan M; Weiss RG; Bottomley PA
    J Cardiovasc Magn Reson; 2019 Aug; 21(1):49. PubMed ID: 31401975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MR spectroscopy in heart failure--clinical and experimental findings.
    Ten Hove M; Neubauer S
    Heart Fail Rev; 2007 Mar; 12(1):48-57. PubMed ID: 17333358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transmural saturation transfer analysis of the creatine kinase system in the mammalian heart.
    Robitaille PM; Abduljalil A; Rath D; Zhang H; Hamlin RL
    Magn Reson Med; 1993 Jul; 30(1):4-10. PubMed ID: 8371673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid,
    Miller JJ; Valkovič L; Kerr M; Timm KN; Watson WD; Lau JYC; Tyler A; Rodgers C; Bottomley PA; Heather LC; Tyler DJ
    Magn Reson Med; 2021 Jun; 85(6):2978-2991. PubMed ID: 33538063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computer simulation of the P31 NMR equations governing the creatine kinase reaction.
    DeFuria RR; Dygert MK; Alachi GM
    J Theor Biol; 1985 May; 114(1):75-91. PubMed ID: 4010311
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ.
    Holtzman D; Mulkern R; Tsuji M; Cook C; Meyers R
    Dev Neurosci; 1996; 18(5-6):535-41. PubMed ID: 8940629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impaired ATP kinetics in failing in vivo mouse heart.
    Gupta A; Chacko VP; Schär M; Akki A; Weiss RG
    Circ Cardiovasc Imaging; 2011 Jan; 4(1):42-50. PubMed ID: 20926788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations.
    Bakermans AJ; Abdurrachim D; van Nierop BJ; Koeman A; van der Kroon I; Baartscheer A; Schumacher CA; Strijkers GJ; Houten SM; Zuurbier CJ; Nicolay K; Prompers JJ
    NMR Biomed; 2015 Oct; 28(10):1218-27. PubMed ID: 26269430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy.
    Du F; Cooper AJ; Thida T; Sehovic S; Lukas SE; Cohen BM; Zhang X; Ongür D
    JAMA Psychiatry; 2014 Jan; 71(1):19-27. PubMed ID: 24196348
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Creatine loading and resting skeletal muscle phosphocreatine flux: a saturation-transfer NMR study.
    Wiedermann D; Schneider J; Fromme A; Thorwesten L; Möller HE
    MAGMA; 2001 Oct; 13(2):118-26. PubMed ID: 11502426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spectral improvement by fourier thresholding of in vivo dynamic spectroscopy data.
    Rowland B; Merugumala SK; Liao H; Creager MA; Balschi J; Lin AP
    Magn Reson Med; 2016 Sep; 76(3):978-85. PubMed ID: 26445244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel strategy for measuring creatine kinase reaction rate in the in vivo heart.
    Xiong Q; Li Q; Mansoor A; Jameel MN; Du F; Chen W; Zhang J
    Am J Physiol Heart Circ Physiol; 2009 Sep; 297(3):H1010-9. PubMed ID: 19561307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.