These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11979574)

  • 1. Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone.
    Hwang SN; Wehrli FW
    Magn Reson Med; 2002 May; 47(5):948-57. PubMed ID: 11979574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Micro MRI of trabecular bone].
    Takahashi M; Wehrli FW
    Clin Calcium; 2004 Dec; 14(12):47-54. PubMed ID: 15577173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform.
    Saha PK; Wehrli FW
    IEEE Trans Med Imaging; 2004 Jan; 23(1):53-62. PubMed ID: 14719687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trabecular bone structure analysis in the limited spatial resolution regime of in vivo MRI.
    Magland JF; Wehrli FW
    Acad Radiol; 2008 Dec; 15(12):1482-93. PubMed ID: 19000865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New architectural parameters derived from micro-MRI for the prediction of trabecular bone strength.
    Wehrli FW; Hwang SN; Song HK
    Technol Health Care; 1998 Dec; 6(5-6):307-20. PubMed ID: 10100934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in vivo MRI.
    Vasilic B; Wehrli FW
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1574-85. PubMed ID: 16353372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis.
    Wehrli FW; Gomberg BR; Saha PK; Song HK; Hwang SN; Snyder PJ
    J Bone Miner Res; 2001 Aug; 16(8):1520-31. PubMed ID: 11499875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of resolution and noise for in vivo micro-MRI of trabecular bone.
    Li CQ; Magland JF; Rajapakse CS; Guo XE; Zhang XH; Vasilic B; Wehrli FW
    Med Phys; 2008 Dec; 35(12):5584-94. PubMed ID: 19175116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength.
    Hwang SN; Wehrli FW; Williams JL
    Med Phys; 1997 Aug; 24(8):1255-61. PubMed ID: 9284249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian approach to subvoxel tissue classification in NMR microscopic images of trabecular bone.
    Wu Z; Chung HW; Wehrli FW
    Magn Reson Med; 1994 Mar; 31(3):302-8. PubMed ID: 8057801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing.
    Wehrli FW; Hwang SN; Ma J; Song HK; Ford JC; Haddad JG
    Radiology; 1998 Feb; 206(2):347-57. PubMed ID: 9457185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils.
    Gensanne D; Josse G; Lagarde JM; Vincensini D
    Phys Med Biol; 2006 Jun; 51(11):2843-55. PubMed ID: 16723770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of 3D MR microscopy for trabecular bone assessment: a comparative study on calcaneus samples using 3D synchrotron radiation microtomography.
    Last D; Peyrin F; Guillot G
    MAGMA; 2005 Mar; 18(1):26-34. PubMed ID: 15583975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of trabecular bone structure from high-resolution magnetic resonance images using fuzzy logic.
    Carballido-Gamio J; Phan C; Link TM; Majumdar S
    Magn Reson Imaging; 2006 Oct; 24(8):1023-9. PubMed ID: 16997072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo trabecular bone morphologic and mechanical relationship using high-resolution 3-T MRI.
    Alberich-Bayarri A; Marti-Bonmati L; Sanz-Requena R; Belloch E; Moratal D
    AJR Am J Roentgenol; 2008 Sep; 191(3):721-6. PubMed ID: 18716099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of MRI resolution affecting trabecular bone parameters: determination of acceptable resolution.
    Kim N; Lee JG; Song Y; Kim HJ; S Yeom J; Cho G
    Magn Reson Med; 2012 Jan; 67(1):218-25. PubMed ID: 21656550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of trabecular structure using high resolution magnetic resonance imaging.
    Majumdar S; Genant HK
    Stud Health Technol Inform; 1997; 40():81-96. PubMed ID: 10168884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis.
    Song HK; Wehrli FW
    Magn Reson Med; 1999 May; 41(5):947-53. PubMed ID: 10332878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelet-based characterization of vertebral trabecular bone structure from magnetic resonance images at 3 T compared with micro-computed tomographic measurements.
    Krug R; Carballido-Gamio J; Burghardt AJ; Haase S; Sedat JW; Moss WC; Majumdar S
    Magn Reson Imaging; 2007 Apr; 25(3):392-8. PubMed ID: 17371730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.