These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11979593)

  • 1. Time-resolved FTIR difference spectroscopy as tool for investigating refolding reactions of ribonuclease T1 synchronized with trans --> cis prolyl isomerization.
    Moritz R; Reinstädler D; Fabian H; Naumann D
    Biopolymers; 2002; 67(3):145-55. PubMed ID: 11979593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine.
    Mayr LM; Landt O; Hahn U; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):897-912. PubMed ID: 8515459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New structural insights into the refolding of ribonuclease T1 as seen by time-resolved Fourier-transform infrared spectroscopy.
    Reinstädler D; Fabian H; Naumann D
    Proteins; 1999 Feb; 34(3):303-16. PubMed ID: 10024018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intact disulfide bonds decelerate the folding of ribonuclease T1.
    Mücke M; Schmid FX
    J Mol Biol; 1994 Jun; 239(5):713-25. PubMed ID: 8014991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique.
    Mayr LM; Odefey C; Schutkowski M; Schmid FX
    Biochemistry; 1996 Apr; 35(17):5550-61. PubMed ID: 8611546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy.
    Balbach J; Steegborn C; Schindler T; Schmid FX
    J Mol Biol; 1999 Jan; 285(2):829-42. PubMed ID: 9878447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1.
    Mayr LM; Willbold D; Landt O; Schmid FX
    Protein Sci; 1994 Feb; 3(2):227-39. PubMed ID: 8003959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of primary sequence transpositions on the folding pathways of ribonuclease T1.
    Johnson JL; Raushel FM
    Biochemistry; 1996 Aug; 35(31):10223-33. PubMed ID: 8756488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of a native-state prolyl isomerization.
    Jakob RP; Schmid FX
    J Mol Biol; 2009 Apr; 387(4):1017-31. PubMed ID: 19232524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods to study protein folding by stopped-flow FT-IR.
    Fabian H; Naumann D
    Methods; 2004 Sep; 34(1):28-40. PubMed ID: 15283913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase.
    Schiene-Fischer C; Habazettl J; Schmid FX; Fischer G
    Nat Struct Biol; 2002 Jun; 9(6):419-24. PubMed ID: 12021775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The slow step of folding of Staphylococcus aureus PC1 beta-lactamase involves the collapse of a surface loop rate limited by the trans to cis isomerization of a non-proline peptide bond.
    Wheeler KA; Hawkins AR; Pain R; Virden R
    Proteins; 1998 Dec; 33(4):550-7. PubMed ID: 9849938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a non-prolyl cis peptide bond in ribonuclease T1.
    Mayr LM; Willbold D; Rösch P; Schmid FX
    J Mol Biol; 1994 Jul; 240(4):288-93. PubMed ID: 8035456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic coupling of folding and prolyl isomerization of beta2-microglobulin studied by mutational analysis.
    Sakata M; Chatani E; Kameda A; Sakurai K; Naiki H; Goto Y
    J Mol Biol; 2008 Oct; 382(5):1242-55. PubMed ID: 18708068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline isomerization in bovine pancreatic ribonuclease A. 2. Folding conditions.
    Bhat R; Wedemeyer WJ; Scheraga HA
    Biochemistry; 2003 May; 42(19):5722-8. PubMed ID: 12741829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of multiple prolyl isomerization reactions on the stability and folding kinetics of the notch ankyrin domain: experiment and theory.
    Bradley CM; Barrick D
    J Mol Biol; 2005 Sep; 352(2):253-65. PubMed ID: 16054647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of a trans-proline in the folding mechanism of ribonuclease T1.
    Schindler T; Mayr LM; Landt O; Hahn U; Schmid FX
    Eur J Biochem; 1996 Oct; 241(2):516-24. PubMed ID: 8917450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of RNase T1 is decelerated by a specific tertiary contact in a folding intermediate.
    Kiefhaber T; Grunert HP; Hahn U; Schmid FX
    Proteins; 1992 Feb; 12(2):171-9. PubMed ID: 1603806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.