These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11980853)

  • 21. Comparison of methods to predict visual field progression in glaucoma.
    Nouri-Mahdavi K; Hoffman D; Ralli M; Caprioli J
    Arch Ophthalmol; 2007 Sep; 125(9):1176-81. PubMed ID: 17846355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diagnosing glaucoma progression: current practice and promising technologies.
    Giangiacomo A; Garway-Heath D; Caprioli J
    Curr Opin Ophthalmol; 2006 Apr; 17(2):153-62. PubMed ID: 16552250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing noise in suspected glaucomatous visual fields by using a new spatial filter.
    Gardiner SK; Crabb DP; Fitzke FW; Hitchings RA
    Vision Res; 2004 Apr; 44(8):839-48. PubMed ID: 14967209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global and pointwise rates of decay in glaucoma eyes deteriorating according to pointwise event analysis.
    Nassiri N; Moghimi S; Coleman AL; Law SK; Caprioli J; Nouri-Mahdavi K
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1208-13. PubMed ID: 23329667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma.
    Artes PH; Hutchison DM; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2451-7. PubMed ID: 15980235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural history of open-angle glaucoma.
    Heijl A; Bengtsson B; Hyman L; Leske MC;
    Ophthalmology; 2009 Dec; 116(12):2271-6. PubMed ID: 19854514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cost-effectiveness of routine office-based identification and subsequent medical treatment of primary open-angle glaucoma in the United States.
    Rein DB; Wittenborn JS; Lee PP; Wirth KE; Sorensen SW; Hoerger TJ; Saaddine JB
    Ophthalmology; 2009 May; 116(5):823-32. PubMed ID: 19285730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of algorithms for calculating glaucoma change probability confidence intervals.
    Meng S; Turpin A; Lazarescu M; Ivins J
    J Glaucoma; 2006 Oct; 15(5):405-13. PubMed ID: 16988603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity and specificity of the StratusOCT for perimetric glaucoma.
    Budenz DL; Michael A; Chang RT; McSoley J; Katz J
    Ophthalmology; 2005 Jan; 112(1):3-9. PubMed ID: 15629813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of visual field progression in glaucoma.
    Nouri-Mahdavi K; Hoffman D; Gaasterland D; Caprioli J
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4346-51. PubMed ID: 15557442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting visual field loss in ocular hypertensive patients using wavelet-fourier analysis of GDx scanning laser polarimetry.
    Essock EA; Gunvant P; Zheng Y; Garway-Heath DF; Kotecha A; Spratt A
    Optom Vis Sci; 2007 May; 84(5):380-7. PubMed ID: 17502818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs.
    Bengtsson B; Heijl A
    Ophthalmology; 2006 Jul; 113(7):1092-7. PubMed ID: 16815399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Examination of the performance of different pointwise linear regression progression criteria to detect glaucomatous visual field change.
    De Moraes CG; Liebmann CA; Susanna R; Ritch R; Liebmann JM
    Clin Exp Ophthalmol; 2012; 40(4):e190-6. PubMed ID: 21902781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glaucomatous visual field progression with frequency-doubling technology and standard automated perimetry in a longitudinal prospective study.
    Haymes SA; Hutchison DM; McCormick TA; Varma DK; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):547-54. PubMed ID: 15671281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields.
    Sample PA; Goldbaum MH; Chan K; Boden C; Lee TW; Vasile C; Boehm AG; Sejnowski T; Johnson CA; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2660-5. PubMed ID: 12147600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity differences between real-patient and computer-stimulated visual fields.
    Vesti E; Spry PG; Chauhan BC; Johnson CA
    J Glaucoma; 2002 Feb; 11(1):35-45. PubMed ID: 11821688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatially consistent, localized visual field loss before and after disc hemorrhage.
    De Moraes CG; Prata TS; Liebmann CA; Tello C; Ritch R; Liebmann JM
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4727-33. PubMed ID: 19458330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What reduction in standard automated perimetry variability would improve the detection of visual field progression?
    Turpin A; McKendrick AM
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3237-45. PubMed ID: 21357405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ganglion cell loss and dysfunction: relationship to perimetric sensitivity.
    Drasdo N; Mortlock KE; North RV
    Optom Vis Sci; 2008 Nov; 85(11):1036-42. PubMed ID: 18981918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma.
    Leung CK; Chong KK; Chan WM; Yiu CK; Tso MY; Woo J; Tsang MK; Tse KK; Yung WH
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3702-11. PubMed ID: 16186352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.