BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 11980890)

  • 1. Retinal origins of the primate multifocal ERG: implications for the human response.
    Hood DC; Frishman LJ; Saszik S; Viswanathan S
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1673-85. PubMed ID: 11980890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG.
    Rangaswamy NV; Hood DC; Frishman LJ
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina.
    Rangaswamy NV; Frishman LJ; Dorotheo EU; Schiffman JS; Bahrani HM; Tang RA
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3827-37. PubMed ID: 15452095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primate Retinal Signaling Pathways: Suppressing ON-Pathway Activity in Monkey With Glutamate Analogues Mimics Human CSNB1-NYX Genetic Night Blindness.
    Khan NW; Kondo M; Hiriyanna KT; Jamison JA; Bush RA; Sieving PA
    J Neurophysiol; 2005 Jan; 93(1):481-92. PubMed ID: 15331616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porcine global flash multifocal electroretinogram: possible mechanisms for the glaucomatous changes in contrast response function.
    Chu PHW; Chan HHL; Ng YF; Brown B; Siu AW; Beale BA; Gilger BC; Wong F
    Vision Res; 2008 Jul; 48(16):1726-1734. PubMed ID: 18573515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of retinal neurons to d-wave of primate photopic electroretinograms.
    Ueno S; Kondo M; Ueno M; Miyata K; Terasaki H; Miyake Y
    Vision Res; 2006 Mar; 46(5):658-64. PubMed ID: 16039691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacologically defined components of the normal porcine multifocal ERG.
    Ng YF; Chan HH; Chu PH; Siu AW; To CH; Beale BA; Gilger BC; Wong F
    Doc Ophthalmol; 2008 May; 116(3):165-76. PubMed ID: 17721791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proximal retinal component in the primate photopic ERG a-wave.
    Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):635-45. PubMed ID: 8113014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity.
    Viswanathan S; Frishman LJ; Robson JG
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2797-810. PubMed ID: 10937600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal pathway origins of the pattern ERG of the mouse.
    Miura G; Wang MH; Ivers KM; Frishman LJ
    Exp Eye Res; 2009 Jun; 89(1):49-62. PubMed ID: 19250935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supernormal ERG oscillatory potentials in transgenic rabbit with rhodopsin P347L mutation and retinal degeneration.
    Sakai T; Kondo M; Ueno S; Koyasu T; Komeima K; Terasaki H
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4402-9. PubMed ID: 19407007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminance dependence of neural components that underlies the primate photopic electroretinogram.
    Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of regional retinal responses on cortical visually evoked responses: multifocal ERGs and VEPs in the retinitis pigmentosa model.
    Parisi V; Ziccardi L; Stifano G; Montrone L; Gallinaro G; Falsini B
    Clin Neurophysiol; 2010 Mar; 121(3):380-5. PubMed ID: 20071230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifocal electroretinogram in rhodopsin P347L transgenic pigs.
    Ng YF; Chan HH; Chu PH; To CH; Gilger BC; Petters RM; Wong F
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2208-15. PubMed ID: 18223250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON-response of the monkey ERG in vivo.
    Lei B; Bush RA; Milam AH; Sieving PA
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):262-6. PubMed ID: 10634629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques. Macaque photopic sinusoidal flicker ERG.
    Viswanathan S; Frishman LJ; Robson JG
    Doc Ophthalmol; 2002 Sep; 105(2):223-42. PubMed ID: 12462445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of On and Off retinal pathways and retinogeniculate projections.
    Chalupa LM; Günhan E
    Prog Retin Eye Res; 2004 Jan; 23(1):31-51. PubMed ID: 14766316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.