These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 1198097)

  • 41. Trail formation based on directed pheromone deposition.
    Boissard E; Degond P; Motsch S
    J Math Biol; 2013 May; 66(6):1267-301. PubMed ID: 22526837
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plant odors trigger clearing behavior in foraging trails- do they represent olfactory obstacles?
    Alma AM; Buteler M
    Behav Processes; 2019 Dec; 169():103989. PubMed ID: 31669749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perceptual differences in trail-following leaf-cutting ants relate to body size.
    Kleineidam CJ; Rössler W; Hölldobler B; Roces F
    J Insect Physiol; 2007 Dec; 53(12):1233-41. PubMed ID: 17716686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trail geometry gives polarity to ant foraging networks.
    Jackson DE; Holcombe M; Ratnieks FL
    Nature; 2004 Dec; 432(7019):907-9. PubMed ID: 15602563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling shortest path selection of the ant Linepithema humile using psychophysical theory and realistic parameter values.
    von Thienen W; Metzler D; Witte V
    J Theor Biol; 2015 May; 372():168-78. PubMed ID: 25769943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Verification of Argentine ant defensive compounds and their behavioral effects on heterospecific competitors and conspecific nestmates.
    Welzel KF; Lee SH; Dossey AT; Chauhan KR; Choe DH
    Sci Rep; 2018 Jan; 8(1):1477. PubMed ID: 29367727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pheromone disruption of Argentine ant trail integrity.
    Suckling DM; Peck RW; Manning LM; Stringer LD; Cappadonna J; El-Sayed AM
    J Chem Ecol; 2008 Dec; 34(12):1602-9. PubMed ID: 19034574
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The interplay between scent trails and group-mass recruitment systems in ants.
    Planqué R; van den Berg JB; Franks NR
    Bull Math Biol; 2013 Oct; 75(10):1912-40. PubMed ID: 23925728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural pathways for the processing of alarm pheromone in the ant brain.
    Yamagata N; Nishino H; Mizunami M
    J Comp Neurol; 2007 Dec; 505(4):424-42. PubMed ID: 17912739
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The predatory behaviour of a tramp ant species in its native range.
    Kenne M; Mony R; Tindo M; Njaleu LC; Orivel J; Dejean A
    C R Biol; 2005; 328(10-11):1025-30. PubMed ID: 16286091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Significance of the tropical fire ant Solenopsis geminata (hymenoptera: formicidae) as part of the natural enemy complex responsible for successful biological control of many tropical irrigated rice pests.
    Way MJ; Heong KL
    Bull Entomol Res; 2009 Oct; 99(5):503-12. PubMed ID: 19203401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Foreign-language skills in rove-beetles? Evidence for chemical mimicry of ant alarm pheromones in myrmecophilous Pella beetles (Coleoptera: Staphylinidae).
    Stoeffler M; Maier TS; Tolasch T; Steidle JL
    J Chem Ecol; 2007 Jul; 33(7):1382-92. PubMed ID: 17558536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Better tired than lost: Turtle ant trail networks favor coherence over short edges.
    Chandrasekhar A; Marshall JAR; Austin C; Navlakha S; Gordon DM
    PLoS Comput Biol; 2021 Oct; 17(10):e1009523. PubMed ID: 34673768
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation, development, and evolution of caste ratios in the hyperdiverse ant genus Pheidole.
    Lillico-Ouachour A; Abouheif E
    Curr Opin Insect Sci; 2017 Feb; 19():43-51. PubMed ID: 28521942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A model for collective dynamics in ant raids.
    Ryan SD
    J Math Biol; 2016 May; 72(6):1579-606. PubMed ID: 26304617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solitary foraging in the ancestral South American ant, Pogonomyrmex vermiculatus. Is it due to constraints in the production or perception of trail pheromones?
    Torres-Contreras H; Olivares-Donoso R; Niemeyer HM
    J Chem Ecol; 2007 Feb; 33(2):435-40. PubMed ID: 17187299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Just follow your nose: homing by olfactory cues in ants.
    Steck K
    Curr Opin Neurobiol; 2012 Apr; 22(2):231-5. PubMed ID: 22137100
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controversies on the subject of slave-raids in amazon ants (genus Polyergus).
    Dobrzańska J; Dobrzański J
    Acta Neurobiol Exp (Wars); 1989; 49(6):367-79; discussion 379-80. PubMed ID: 2700536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An ant navigation model based on Weber's law.
    Amorim P; Goudon T; Peruani F
    J Math Biol; 2019 Mar; 78(4):943-984. PubMed ID: 30306250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of a non-uniform turning kernel on ant trail morphology.
    Vincent AD; Myerscough MR
    J Math Biol; 2004 Oct; 49(4):391-432. PubMed ID: 15657796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.