These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 11981155)
1. Ketamine suppresses platelet aggregation possibly by suppressed inositol triphosphate formation and subsequent suppression of cytosolic calcium increase. Nakagawa T; Hirakata H; Sato M; Nakamura K; Hatano Y; Nakamura T; Fukuda K Anesthesiology; 2002 May; 96(5):1147-52. PubMed ID: 11981155 [TBL] [Abstract][Full Text] [Related]
2. Propofol has both enhancing and suppressing effects on human platelet aggregation in vitro. Hirakata H; Nakamura K; Yokubol B; Toda H; Hatano Y; Urabe N; Mori K Anesthesiology; 1999 Nov; 91(5):1361-9. PubMed ID: 10551587 [TBL] [Abstract][Full Text] [Related]
3. Sevoflurane inhibits human platelet aggregation and thromboxane A2 formation, possibly by suppression of cyclooxygenase activity. Hirakata H; Ushikubi F; Toda H; Nakamura K; Sai S; Urabe N; Hatano Y; Narumiya S; Mori K Anesthesiology; 1996 Dec; 85(6):1447-53. PubMed ID: 8968193 [TBL] [Abstract][Full Text] [Related]
5. Thiamylal and pentobarbital have opposite effects on human platelet aggregation in vitro. Sato M; Hirakata H; Nakagawa T; Arai K; Fukuda K Anesth Analg; 2003 Nov; 97(5):1353-1359. PubMed ID: 14570651 [TBL] [Abstract][Full Text] [Related]
6. The effect of inhaled anesthetics on the platelet aggregation and the ligand-binding affinity of the platelet thromboxane A2 receptor. Hirakata H; Ushikubi F; Narumiya S; Hatano Y; Nakamura K; Mori K Anesth Analg; 1995 Jul; 81(1):114-8. PubMed ID: 7598237 [TBL] [Abstract][Full Text] [Related]
7. Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction. Johnson GJ; Leis LA; Dunlop PC J Clin Invest; 1993 Nov; 92(5):2469-79. PubMed ID: 8227362 [TBL] [Abstract][Full Text] [Related]
8. Effects of barbiturates on human platelet aggregation differ depending on their chemical structures. Sato M; Hirakata H; Ikeda M; Fukuda K Can J Physiol Pharmacol; 2003 Aug; 81(8):806-14. PubMed ID: 12897810 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms involved in the antiplatelet activity of ketamine in human platelets. Chang Y; Chen TL; Wu GJ; Hsiao G; Shen MY; Lin KH; Chou DS; Lin CH; Sheu JR J Biomed Sci; 2004; 11(6):764-72. PubMed ID: 15591773 [TBL] [Abstract][Full Text] [Related]
10. Defective signal transduction induced by thromboxane A2 in a patient with a mild bleeding disorder: impaired phospholipase C activation despite normal phospholipase A2 activation. Fuse I; Mito M; Hattori A; Higuchi W; Shibata A; Ushikubi F; Okuma M; Yahata K Blood; 1993 Feb; 81(4):994-1000. PubMed ID: 8428006 [TBL] [Abstract][Full Text] [Related]
11. Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-[(4-cyanophenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets. Chang TS; Kim HM; Lee KS; Khil LY; Mar WC; Ryu CK; Moon CK Biochem Pharmacol; 1997 Jul; 54(2):259-68. PubMed ID: 9271330 [TBL] [Abstract][Full Text] [Related]
12. Disparate effects of the calcium-channel blockers, nifedipine and verapamil, on alpha 2-adrenergic receptors and thromboxane A2-induced aggregation of human platelets. Johnson GJ; Leis LA; Francis GS Circulation; 1986 Apr; 73(4):847-54. PubMed ID: 3004784 [TBL] [Abstract][Full Text] [Related]
13. Pharmacological characterization of cinnamophilin, a novel dual inhibitor of thromboxane synthase and thromboxane A2 receptor. Yu SM; Wu TS; Teng CM Br J Pharmacol; 1994 Mar; 111(3):906-12. PubMed ID: 8019768 [TBL] [Abstract][Full Text] [Related]
14. Functional reconstitution of platelet thromboxane A2 receptors with Gq and Gi2 in phospholipid vesicles. Ushikubi F; Nakamura K; Narumiya S Mol Pharmacol; 1994 Nov; 46(5):808-16. PubMed ID: 7969066 [TBL] [Abstract][Full Text] [Related]
15. Defective signal transduction through the thromboxane A2 receptor in a patient with a mild bleeding disorder: deficiency of the inositol 1,4,5-triphosphate formation despite normal G-protein activation. Mitsui T; Yokoyama S; Shimizu Y; Katsuura M; Akiba K; Hayasaka K Thromb Haemost; 1997 May; 77(5):991-5. PubMed ID: 9184416 [TBL] [Abstract][Full Text] [Related]
16. Action of guanosine 5'-[beta-thio]diphosphate on thrombin-induced activation and Ca2+ mobilization in saponin-permeabilized and intact human platelets. Authi KS; Rao GH; Evenden BJ; Crawford N Biochem J; 1988 Nov; 255(3):885-93. PubMed ID: 3063257 [TBL] [Abstract][Full Text] [Related]
17. Regulation of thromboxane receptor activation in human platelets. Murray R; FitzGerald GA Proc Natl Acad Sci U S A; 1989 Jan; 86(1):124-8. PubMed ID: 2521385 [TBL] [Abstract][Full Text] [Related]
18. Binding of a radioiodinated 13-azapinane thromboxane antagonist to platelets: correlation with antiaggregatory activity in different species. Narumiya S; Okuma M; Ushikubi F Br J Pharmacol; 1986 Jun; 88(2):323-31. PubMed ID: 3730697 [TBL] [Abstract][Full Text] [Related]
19. Thromboxane-induced phosphatidate formation in human platelets. Relationship to receptor occupancy and to changes in cytosolic free calcium. Pollock WK; Armstrong RA; Brydon LJ; Jones RL; MacIntyre DE Biochem J; 1984 May; 219(3):833-42. PubMed ID: 6234886 [TBL] [Abstract][Full Text] [Related]
20. Different effects of endothelin-3 on the Ca2+ discharge induced by agonists and Ca(2+)-ATPase inhibitors in human platelets. Astarie-Dequeker C; Korichneva I; Devynck MA Br J Pharmacol; 1995 Jan; 114(2):524-30. PubMed ID: 7881751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]