BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11982351)

  • 1. Aromatic 4-tetrahydropyranyl and 4-quinuclidinyl cations. Linking Prins with Cope and Grob.
    Alder RW; Harvey JN; Oakley MT
    J Am Chem Soc; 2002 May; 124(18):4960-1. PubMed ID: 11982351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvolysis of a tetrahydropyranyl mesylate: mechanistic implications for the Prins cyclization, 2-oxonia-cope rearrangement, and Grob fragmentation.
    Jasti R; Rychnovsky SD
    Org Lett; 2006 May; 8(10):2175-8. PubMed ID: 16671810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of an oxonia-Cope rearrangement as a mechanistic probe for Prins cyclizations.
    Jasti R; Anderson CD; Rychnovsky SD
    J Am Chem Soc; 2005 Jul; 127(27):9939-45. PubMed ID: 15998101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Searching for intermediates in Prins cyclisations: the 2-oxa-5-adamantyl carbocation.
    Alder RW; Carta F; Reed CA; Stoyanova I; Willis CL
    Org Biomol Chem; 2010 Apr; 8(7):1551-9. PubMed ID: 20237666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical spectra of protected diamine 10-bond-bridged intervalence radical cations related to N,N,N'N'-tetraalkylbenzidine.
    Nelsen SF; Luo Y; Weaver MN; Lockard JV; Zink JI
    J Org Chem; 2006 May; 71(11):4286-95. PubMed ID: 16709073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ring walk of methylene groups in toluene radical cations. An extension of the toluene-cycloheptatriene rearrangement of aromatic radical cations. Theory and experiment.
    Grützmacher HF; Harting N
    Eur J Mass Spectrom (Chichester); 2003; 9(4):327-41. PubMed ID: 12939485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized aromaticity as an enthalpic driving force for the aromatic Cope rearrangement.
    Babinski DJ; Bao X; El Arba M; Chen B; Hrovat DA; Borden WT; Frantz DE
    J Am Chem Soc; 2012 Oct; 134(39):16139-42. PubMed ID: 22963196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies.
    Matsuda SP; Wilson WK; Xiong Q
    Org Biomol Chem; 2006 Feb; 4(3):530-43. PubMed ID: 16446812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective stabilization of transition state structures for cope rearrangements of semibullvalene and barbaralane through interactions with halogens.
    Wang SC; Tantillo DJ
    J Phys Chem A; 2007 Aug; 111(30):7149-53. PubMed ID: 17602458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of multiple cation-pi interactions upon calix[4]arene substrate binding and specificity.
    Macias AT; Norton JE; Evanseck JD
    J Am Chem Soc; 2003 Feb; 125(8):2351-60. PubMed ID: 12590565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple Mathematical Model for the Cooperative and Competitive Substituent Effects Found in the Cope Rearrangements of Phenyl-Substituted 1,5-Hexadienes.
    Hrovat DA; Borden WT
    J Chem Theory Comput; 2005 Jan; 1(1):87-94. PubMed ID: 26641120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical study of stabilization of delocalized forms of semibullvalenes and barbaralanes by dipolar and polarizable solvents. Observation of a delocalized structure that is lower in free energy than the localized form.
    Seefelder M; Heubes M; Quast H; Edwards WD; Armantrout JR; Williams RV; Cramer CJ; Goren AC; Hrovat DA; Borden WT
    J Org Chem; 2005 Apr; 70(9):3437-49. PubMed ID: 15844976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Norbornyl cations of group 14 elements.
    Müller T; Bauch C; Ostermeier M; Bolte M; Auner N
    J Am Chem Soc; 2003 Feb; 125(8):2158-68. PubMed ID: 12590544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen motion in proton sponge cations: a theoretical study.
    Horbatenko Y; Vyboishchikov SF
    Chemphyschem; 2011 Apr; 12(6):1118-29. PubMed ID: 21432979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociative and associative mechanisms of cope rearrangements of fluorinated 1,5-hexadienes and 2,2'-bis-methylenecyclopentanes.
    Black KA; Wilsey S; Houk KN
    J Am Chem Soc; 2003 Jun; 125(22):6715-24. PubMed ID: 12769581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sakurai-Prins-Ritter sequence for the three-component diastereoselective synthesis of 4-amino tetrahydropyrans.
    Epstein OL; Rovis T
    J Am Chem Soc; 2006 Dec; 128(51):16480-1. PubMed ID: 17177379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular orbital calculations of ring opening of the isoelectronic cyclopropylcarbinyl radical, cyclopropoxy radical, and cyclopropylaminium radical cation series of radical clocks.
    Cooksy AL; King HF; Richardson WH
    J Org Chem; 2003 Nov; 68(24):9441-52. PubMed ID: 14629170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 3,4-disubstituted piperidines by carbonyl ene and prins cyclizations: switching between kinetic and thermodynamic control with Brønsted and Lewis acid catalysts.
    Williams JT; Bahia PS; Kariuki BM; Spencer N; Philp D; Snaith JS
    J Org Chem; 2006 Mar; 71(6):2460-71. PubMed ID: 16526798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation-pi interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes.
    Ruan C; Yang Z; Hallowita N; Rodgers MT
    J Phys Chem A; 2005 Dec; 109(50):11539-50. PubMed ID: 16354046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the interaction between the imidazolium cation and aromatic amino acids. A computational study.
    Rodríguez-Sanz AA; Cabaleiro-Lago EM; Rodríguez-Otero J
    Org Biomol Chem; 2015 Aug; 13(29):7961-72. PubMed ID: 26110765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.