These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11982366)

  • 1. Radial control of recognition and redox processes with multivalent nanoparticle hosts.
    Boal AK; Rotello VM
    J Am Chem Soc; 2002 May; 124(18):5019-24. PubMed ID: 11982366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromatic stacking interactions in flavin model systems.
    Nandwana V; Samuel I; Cooke G; Rotello VM
    Acc Chem Res; 2013 Apr; 46(4):1000-9. PubMed ID: 23163808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific interactions of complementary mono- and multivalent guests with recognition-induced polymersomes.
    Thibault RJ; Galow TH; Turnberg EJ; Gray M; Hotchkiss PJ; Rotello VM
    J Am Chem Soc; 2002 Dec; 124(51):15249-54. PubMed ID: 12487600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial flavin receptors: effects of hydrogen bonding on redox properties of a flavin mimic.
    Yano Y
    Antioxid Redox Signal; 2001 Oct; 3(5):899-909. PubMed ID: 11761335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model systems for flavoenzyme activity: flavin-functionalised SAMs as models for probing redox modulation through hydrogen bonding.
    Cooke G; Duclairoir FM; John P; Polwart N; Rotello VM
    Chem Commun (Camb); 2003 Oct; (19):2468-9. PubMed ID: 14587735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond.
    Hamdane D; Bou-Nader C; Cornu D; Hui-Bon-Hoa G; Fontecave M
    Biochemistry; 2015 Jul; 54(28):4354-64. PubMed ID: 26120776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties.
    Legrand YM; Gray M; Cooke G; Rotello VM
    J Am Chem Soc; 2003 Dec; 125(51):15789-95. PubMed ID: 14677969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.
    Gutiérrez Sánchez C; Su Q; Schönherr H; Grininger M; Nöll G
    ACS Nano; 2015; 9(4):3491-500. PubMed ID: 25738566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding.
    Fukuzumi S; Kojima T
    J Biol Inorg Chem; 2008 Mar; 13(3):321-33. PubMed ID: 18270755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bond-free flavin redox properties: managing flavins in extreme aprotic solvents.
    Cerda JF; Koder RL; Lichtenstein BR; Moser CM; Miller AF; Dutton PL
    Org Biomol Chem; 2008 Jun; 6(12):2204-12. PubMed ID: 18528583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating the redox property of a flavin analog through adjustment of its microenvironment in a self-assembled monolayer.
    Carson TD; Tam-Chang SW; Beck HE
    Antioxid Redox Signal; 2001 Oct; 3(5):731-6. PubMed ID: 11761323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition and stabilization of peptide alpha-helices using templatable nanoparticle receptors.
    Verma A; Nakade H; Simard JM; Rotello VM
    J Am Chem Soc; 2004 Sep; 126(35):10806-7. PubMed ID: 15339141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model systems for flavoenzyme activity: recognition and redox modulation of flavin mononucleotide in water using nanoparticles.
    Bayir A; Jordan BJ; Verma A; Pollier MA; Cooke G; Rotello VM
    Chem Commun (Camb); 2006 Oct; (38):4033-5. PubMed ID: 17003890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model systems for flavoenzyme activity: intramolecular self-assembly of a flavin derivative via hydrogen bonding and aromatic interactions.
    Caldwell ST; Cooke G; Hewage SG; Mabruk S; Rabani G; Rotello V; Smith BO; Subramani C; Woisel P
    Chem Commun (Camb); 2008 Sep; (35):4126-8. PubMed ID: 18802504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticle-mediated transfection of mammalian cells.
    Sandhu KK; McIntosh CM; Simard JM; Smith SW; Rotello VM
    Bioconjug Chem; 2002; 13(1):3-6. PubMed ID: 11792172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors.
    Fischer NO; McIntosh CM; Simard JM; Rotello VM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5018-23. PubMed ID: 11929986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition mediated encapsulation and isolation of flavin-polymer conjugates using dendritic guest moieties.
    Subramani C; Yesilbag G; Jordan BJ; Li X; Khorasani A; Cooke G; Sanyal A; Rotello VM
    Chem Commun (Camb); 2010 Mar; 46(12):2067-9. PubMed ID: 20221494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticles: scaffolds for molecular recognition.
    Drechsler U; Erdogan B; Rotello VM
    Chemistry; 2004 Nov; 10(22):5570-9. PubMed ID: 15372582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.