These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 11982366)

  • 41. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters.
    McIntosh CM; Esposito EA; Boal AK; Simard JM; Martin CT; Rotello VM
    J Am Chem Soc; 2001 Aug; 123(31):7626-9. PubMed ID: 11480984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.
    Golden E; Yu LJ; Meilleur F; Blakeley MP; Duff AP; Karton A; Vrielink A
    Sci Rep; 2017 Jan; 7():40517. PubMed ID: 28098177
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Model systems for flavoenzyme activity: a tuneable intramolecularly hydrogen bonded flavin-diamidopyridine complex.
    Boyd AS; Carroll JB; Cooke G; Garety JF; Jordan BJ; Mabruk S; Rosair G; Rotello VM
    Chem Commun (Camb); 2005 May; (19):2468-70. PubMed ID: 15886773
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whence flavins? Redox-active ribonucleotides link metabolism and genome repair to the RNA world.
    Nguyen KV; Burrows CJ
    Acc Chem Res; 2012 Dec; 45(12):2151-9. PubMed ID: 23054469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. X-ray structures of two oxidation states of a flavin-nicotinamide biscoenzyme and models for flavin--nicotinamide interactions.
    Porter DJ; Bright HJ; Voet D
    Nature; 1977 Sep; 269(5625):213-7. PubMed ID: 145544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen-bonding modulation of excited-state properties of flavins in a model of aqueous confined environment.
    Valle L; Vieyra FE; Borsarelli CD
    Photochem Photobiol Sci; 2012 Jun; 11(6):1051-61. PubMed ID: 22434390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular Dynamics Simulations.
    Hong G; Pachter R
    J Phys Chem B; 2016 Jun; 120(25):5617-24. PubMed ID: 27266856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of stacking interactions on the thermodynamics and kinetics of lumiflavin: a study with improved density functionals and density functional tight-binding protocol.
    Bresnahan CG; Reinhardt CR; Bartholow TG; Rumpel JP; North M; Bhattacharyya S
    J Phys Chem A; 2015 Jan; 119(1):172-82. PubMed ID: 25490119
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of the flavin redox potential by flavin-binding antibodies.
    Bruggeman YE; Honegger A; Kreuwel H; Visser AJ; Laane C; Schots A; Hilhorst R
    Eur J Biochem; 1997 Oct; 249(2):393-400. PubMed ID: 9370345
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants.
    Wagner MA; Trickey P; Chen ZW; Mathews FS; Jorns MS
    Biochemistry; 2000 Aug; 39(30):8813-24. PubMed ID: 10913292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the covalently bound anionic flavin radical in monoamine oxidase a by electron paramagnetic resonance.
    Kay CW; El Mkami H; Molla G; Pollegioni L; Ramsay RR
    J Am Chem Soc; 2007 Dec; 129(51):16091-7. PubMed ID: 18044898
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aromatic amide and hydrazide foldamer-based responsive host-guest systems.
    Zhang DW; Zhao X; Li ZT
    Acc Chem Res; 2014 Jul; 47(7):1961-70. PubMed ID: 24673152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation.
    Imada Y; Iida H; Ono S; Masui Y; Murahashi S
    Chem Asian J; 2006 Jul; 1(1-2):136-47. PubMed ID: 17441048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of free energy relationships to probe the individual steps of hydroxylation of p-hydroxybenzoate hydroxylase: studies with a series of 8-substituted flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 1999 Jun; 38(25):8124-37. PubMed ID: 10387058
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relative timing of hydrogen and proton transfers in the reaction of flavin oxidation catalyzed by choline oxidase.
    Gannavaram S; Gadda G
    Biochemistry; 2013 Feb; 52(7):1221-6. PubMed ID: 23339467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transient kinetics of flavin-photosensitized oxidation of reduced redox proteins. Comparison of c-type cytochromes and plastocyanins.
    Navarro JA; De la Rosa MA; Tollin G
    Eur J Biochem; 1991 Jul; 199(1):239-43. PubMed ID: 1648485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide. A reappraisal.
    Mayhew SG
    Eur J Biochem; 1999 Oct; 265(2):698-702. PubMed ID: 10504402
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of the redox properties of the flavin cofactor through hydrogen-bonding interactions with the N(5) atom: role of alphaSer254 in the electron-transfer flavoprotein from the methylotrophic bacterium W3A1.
    Yang KY; Swenson RP
    Biochemistry; 2007 Mar; 46(9):2289-97. PubMed ID: 17291008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.