These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 11982636)
1. Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. Hurelbrink CB; Armstrong RJ; Dunnett SB; Rosser AE; Barker RA Eur J Neurosci; 2002 Apr; 15(7):1255-66. PubMed ID: 11982636 [TBL] [Abstract][Full Text] [Related]
2. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Darsalia V; Kallur T; Kokaia Z Eur J Neurosci; 2007 Aug; 26(3):605-14. PubMed ID: 17686040 [TBL] [Abstract][Full Text] [Related]
3. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. McBride JL; Behrstock SP; Chen EY; Jakel RJ; Siegel I; Svendsen CN; Kordower JH J Comp Neurol; 2004 Jul; 475(2):211-9. PubMed ID: 15211462 [TBL] [Abstract][Full Text] [Related]
4. Induction of tyrosine hydroxylase expression in rat fetal striatal precursor cells following transplantation. Tang Z; Yu Y; Guo H; Zhou J Neurosci Lett; 2002 May; 324(1):13-6. PubMed ID: 11983283 [TBL] [Abstract][Full Text] [Related]
5. Migration of cells from primary transplants of allo- and xenografted foetal striatal tissue in the adult rat brain. Hurelbrink CB; Barker RA Eur J Neurosci; 2005 Mar; 21(6):1503-10. PubMed ID: 15845078 [TBL] [Abstract][Full Text] [Related]
6. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Vazey EM; Chen K; Hughes SM; Connor B Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705 [TBL] [Abstract][Full Text] [Related]
7. Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Armstrong RJ; Harrower TP; Hurelbrink CB; McLaughin M; Ratcliffe EL; Tyers P; Richards A; Dunnett SB; Rosser AE; Barker RA Neuroscience; 2001; 106(1):201-16. PubMed ID: 11564430 [TBL] [Abstract][Full Text] [Related]
8. The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinson's disease. Armstrong RJ; Hurelbrink CB; Tyers P; Ratcliffe EL; Richards A; Dunnett SB; Rosser AE; Barker RA Exp Neurol; 2002 May; 175(1):98-111. PubMed ID: 12009763 [TBL] [Abstract][Full Text] [Related]
9. Long-term fate of human telencephalic progenitor cells grafted into the adult mouse brain: effects of previous amplification in vitro. Buchet D; Buc-Caron MH; Sabaté O; Lachapelle F; Mallet J J Neurosci Res; 2002 May; 68(3):276-83. PubMed ID: 12111857 [TBL] [Abstract][Full Text] [Related]
10. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. Kallur T; Darsalia V; Lindvall O; Kokaia Z J Neurosci Res; 2006 Dec; 84(8):1630-44. PubMed ID: 17044030 [TBL] [Abstract][Full Text] [Related]
11. Embryonic ventral mesencephalic grafts to the substantia nigra of MPTP-treated monkeys: feasibility relevant to multiple-target grafting as a therapy for Parkinson's disease. Collier TJ; Sortwell CE; Elsworth JD; Taylor JR; Roth RH; Sladek JR; Redmond DE J Comp Neurol; 2002 Jan; 442(4):320-30. PubMed ID: 11793337 [TBL] [Abstract][Full Text] [Related]
12. Long-term survival and glial differentiation of the brain-derived precursor cell line RN33B after subretinal transplantation to adult normal rats. Wojciechowski AB; Englund U; Lundberg C; Warfvinge K Stem Cells; 2002; 20(2):163-73. PubMed ID: 11897873 [TBL] [Abstract][Full Text] [Related]
13. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease. Nakao N; Grasbon-Frodl EM; Widner H; Brundin P Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865 [TBL] [Abstract][Full Text] [Related]
14. Restricted spontaneous in vitro differentiation and region-specific migration of long-term expanded fetal human neural precursor cells after transplantation into the adult rat brain. Maciaczyk J; Singec I; Maciaczyk D; Klein A; Nikkhah G Stem Cells Dev; 2009 Sep; 18(7):1043-58. PubMed ID: 19327007 [TBL] [Abstract][Full Text] [Related]
15. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Lepore AC; Fischer I Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260 [TBL] [Abstract][Full Text] [Related]
16. Transplantation of human striatal tissue into a rodent model of Huntington's disease: phenotypic expression of transplanted neurons and host-to-graft innervation. Pundt LL; Kondoh T; Conrad JA; Low WC Brain Res Bull; 1996; 39(1):23-32. PubMed ID: 8846104 [TBL] [Abstract][Full Text] [Related]
17. Embryonic cerebral cortex cells retain CNS phenotypes after transplantation into peripheral nerve. Baez JC; Gajavelli S; Thomas CK; Grumbles RM; Aparicio B; Byer D; Tsoulfas P Exp Neurol; 2004 Oct; 189(2):422-5. PubMed ID: 15380492 [TBL] [Abstract][Full Text] [Related]
18. Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Lundberg C; Martínez-Serrano A; Cattaneo E; McKay RD; Björklund A Exp Neurol; 1997 Jun; 145(2 Pt 1):342-60. PubMed ID: 9217071 [TBL] [Abstract][Full Text] [Related]
19. Additive effect of glial cell line-derived neurotrophic factor and neurotrophin-4/5 on rat fetal nigral explant cultures. Meyer M; Matarredona ER; Seiler RW; Zimmer J; Widmer HR Neuroscience; 2001; 108(2):273-84. PubMed ID: 11734360 [TBL] [Abstract][Full Text] [Related]
20. Migration and multipotentiality of PSA-NCAM+ neural precursors transplanted in the developing brain. Vitry S; Avellana-Adalid V; Lachapelle F; Baron-Van Evercooren A Mol Cell Neurosci; 2001 Jun; 17(6):983-1000. PubMed ID: 11414788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]