BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11982939)

  • 1. Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses.
    Zheng B; Halperin T; Hruskova-Heidingsfeldova O; Adam Z; Clarke AK
    Physiol Plant; 2002 Jan; 114(1):92-101. PubMed ID: 11982939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors.
    Montandon C; Friso G; Liao JR; Choi J; van Wijk KJ
    J Proteome Res; 2019 Jun; 18(6):2585-2600. PubMed ID: 31070379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance.
    Sjögren LLE; Tanabe N; Lymperopoulos P; Khan NZ; Rodermel SR; Aronsson H; Clarke AK
    J Biol Chem; 2014 Apr; 289(16):11318-11330. PubMed ID: 24599948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content.
    Sjögren LL; MacDonald TM; Sutinen S; Clarke AK
    Plant Physiol; 2004 Dec; 136(4):4114-26. PubMed ID: 15563614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis.
    Sjögren LL; Stanne TM; Zheng B; Sutinen S; Clarke AK
    Plant Cell; 2006 Oct; 18(10):2635-49. PubMed ID: 16980539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis.
    Kim J; Olinares PD; Oh SH; Ghisaura S; Poliakov A; Ponnala L; van Wijk KJ
    Plant Physiol; 2013 May; 162(1):157-79. PubMed ID: 23548781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis.
    Stanne TM; Sjögren LL; Koussevitzky S; Clarke AK
    Biochem J; 2009 Jan; 417(1):257-68. PubMed ID: 18754756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana.
    Zheng B; MacDonald TM; Sutinen S; Hurry V; Clarke AK
    Planta; 2006 Oct; 224(5):1103-15. PubMed ID: 16705403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins.
    Sjögren LL; Clarke AK
    Plant Cell; 2011 Jan; 23(1):322-32. PubMed ID: 21266658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant expression, purification and SAXS analysis of Arabidopsis thaliana ClpC1.
    Jagdev MK; Dandapat J; Vasudevan D
    Int J Biol Macromol; 2021 Jan; 167():1273-1280. PubMed ID: 33189753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus.
    Porankiewicz J; Schelin J; Clarke AK
    Mol Microbiol; 1998 Jul; 29(1):275-83. PubMed ID: 9701820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development.
    Koussevitzky S; Stanne TM; Peto CA; Giap T; Sjögren LL; Zhao Y; Clarke AK; Chory J
    Plant Mol Biol; 2007 Jan; 63(1):85-96. PubMed ID: 17009084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics, phylogenetics, and coexpression analyses indicate novel interactions in the plastid CLP chaperone-protease system.
    Rei Liao JY; Friso G; Forsythe ES; Michel EJS; Williams AM; Boguraev SS; Ponnala L; Sloan DB; van Wijk KJ
    J Biol Chem; 2022 Mar; 298(3):101609. PubMed ID: 35065075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures reveal N-terminal Domain of Arabidopsis thaliana ClpD to be highly divergent from that of ClpC1.
    Mohapatra C; Kumar Jagdev M; Vasudevan D
    Sci Rep; 2017 Mar; 7():44366. PubMed ID: 28287170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinctive types of ATP-dependent Clp proteases in cyanobacteria.
    Stanne TM; Pojidaeva E; Andersson FI; Clarke AK
    J Biol Chem; 2007 May; 282(19):14394-402. PubMed ID: 17371875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope.
    Flores-Pérez Ú; Bédard J; Tanabe N; Lymperopoulos P; Clarke AK; Jarvis P
    Plant Physiol; 2016 Jan; 170(1):147-62. PubMed ID: 26586836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis.
    Wei J; Qiu X; Chen L; Hu W; Hu R; Chen J; Sun L; Li L; Zhang H; Lv Z; Shen G
    J Exp Bot; 2015 Sep; 66(19):5809-20. PubMed ID: 26085677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis.
    Weaver LM; Froehlich JE; Amasino RM
    Plant Physiol; 1999 Apr; 119(4):1209-16. PubMed ID: 10198079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones.
    Colombo CV; Ceccarelli EA; Rosano GL
    BMC Plant Biol; 2014 Aug; 14():228. PubMed ID: 25149061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana.
    Rowland E; Kim J; Friso G; Poliakov A; Ponnala L; Sun Q; van Wijk KJ
    New Phytol; 2022 Nov; 236(4):1339-1357. PubMed ID: 35946374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.