These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11983073)

  • 1. Catalysis-linked inactivation of fluoroacetate dehalogenase by ammonia: a novel approach to probe the active-site environment.
    Ichiyama S; Kurihara T; Miyagi M; Galkin A; Tsunasawa S; Kawasaki H; Esaki N
    J Biochem; 2002 May; 131(5):671-7. PubMed ID: 11983073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B.
    Liu JQ; Kurihara T; Ichiyama S; Miyagi M; Tsunasawa S; Kawasaki H; Soda K; Esaki N
    J Biol Chem; 1998 Nov; 273(47):30897-902. PubMed ID: 9812982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of asparagine residue at the active site of the D105N mutant of fluoroacetate dehalogenase from Moraxella sp. B.
    Ichiyama S; Kurihara T; Kogure Y; Tsunasawa S; Kawasaki H; Esaki N
    Biochim Biophys Acta; 2004 Apr; 1698(1):27-36. PubMed ID: 15063312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology modeling and S(N)2 displacement reaction of fluoroacetate dehalogenase from Burkholderia sp. FA1.
    Zhang Y; Li ZS; Wu JY; Sun M; Zheng QC; Sun CC
    Biochem Biophys Res Commun; 2004 Dec; 325(2):414-20. PubMed ID: 15530408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic mechanism of fluoroacetate dehalogenase: a computational exploration of biological dehalogenation.
    Kamachi T; Nakayama T; Shitamichi O; Jitsumori K; Kurihara T; Esaki N; Yoshizawa K
    Chemistry; 2009 Jul; 15(30):7394-403. PubMed ID: 19551770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel catalytic mechanism of nucleophilic substitution by asparagine residue involving cyanoalanine intermediate revealed by mass spectrometric monitoring of an enzyme reaction.
    Ichiyama S; Kurihara T; Li YF; Kogure Y; Tsunasawa S; Esaki N
    J Biol Chem; 2000 Dec; 275(52):40804-9. PubMed ID: 11006296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-Ray crystallographic and mutational studies of fluoroacetate dehalogenase from Burkholderia sp. strain FA1.
    Jitsumori K; Omi R; Kurihara T; Kurata A; Mihara H; Miyahara I; Hirotsu K; Esaki N
    J Bacteriol; 2009 Apr; 191(8):2630-7. PubMed ID: 19218394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D
    Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paracatalytic inactivation of L-2-haloacid dehalogenase from Pseudomonas sp. YL by hydroxylamine. Evidence for the formation of an ester intermediate.
    Liu JQ; Kurihara T; Miyagi M; Tsunasawa S; Nishihara M; Esaki N; Soda K
    J Biol Chem; 1997 Feb; 272(6):3363-8. PubMed ID: 9013577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive site-directed mutagenesis of L-2-halo acid dehalogenase to probe catalytic amino acid residues.
    Kurihara T; Liu JQ; Nardi-Dei V; Koshikawa H; Esaki N; Soda K
    J Biochem; 1995 Jun; 117(6):1317-22. PubMed ID: 7490277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure.
    Krooshof GH; Kwant EM; Damborský J; Koca J; Janssen DB
    Biochemistry; 1997 Aug; 36(31):9571-80. PubMed ID: 9236003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of the 2-haloalkanoic acid dehalogenase I gene from Pseudomonas sp. strain CBS3 and its effect on catalytic activity.
    Schneider B; Müller R; Frank R; Lingens F
    Biol Chem Hoppe Seyler; 1993 Jul; 374(7):489-96. PubMed ID: 8216900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of fluoroacetate dehalogenase: an insight from crystallographic analysis, fluorescence spectroscopy, and theoretical computations.
    Nakayama T; Kamachi T; Jitsumori K; Omi R; Hirotsu K; Esaki N; Kurihara T; Yoshizawa K
    Chemistry; 2012 Jul; 18(27):8392-402. PubMed ID: 22674735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme.
    Xiang H; Dong J; Carey PR; Dunaway-Mariano D
    Biochemistry; 1999 Mar; 38(13):4207-13. PubMed ID: 10194337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction mechanism of L-2-haloacid dehalogenase of Pseudomonas sp. YL. Identification of Asp10 as the active site nucleophile by 18O incorporation experiments.
    Liu JQ; Kurihara T; Miyagi M; Esaki N; Soda K
    J Biol Chem; 1995 Aug; 270(31):18309-12. PubMed ID: 7629151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B.
    Kawasaki H; Tsuda K; Matsushita I; Tonomura K
    J Gen Microbiol; 1992 Jul; 138(7):1317-23. PubMed ID: 1512562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants.
    Li C; Montgomery MG; Mohammed F; Li JJ; Wood SP; Bugg TD
    J Mol Biol; 2005 Feb; 346(1):241-51. PubMed ID: 15663941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium.
    Gregg K; Cooper CL; Schafer DJ; Sharpe H; Beard CE; Allen G; Xu J
    Biotechnology (N Y); 1994 Dec; 12(13):1361-5. PubMed ID: 7765567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.