BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11983078)

  • 1. Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.
    Deshimaru S; Miyake Y; Ohmiya T; Tatsu Y; Endo Y; Yumoto N; Toraya T
    J Biochem; 2002 May; 131(5):705-12. PubMed ID: 11983078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic mechanism of Cdc25.
    Rudolph J
    Biochemistry; 2002 Dec; 41(49):14613-23. PubMed ID: 12463761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.
    Wilborn M; Free S; Ban A; Rudolph J
    Biochemistry; 2001 Nov; 40(47):14200-6. PubMed ID: 11714273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition.
    Borgne A; Meijer L
    J Biol Chem; 1996 Nov; 271(44):27847-54. PubMed ID: 8910383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-specific Cdc25B phosphatase: in search of the catalytic acid.
    Chen W; Wilborn M; Rudolph J
    Biochemistry; 2000 Sep; 39(35):10781-9. PubMed ID: 10978163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).
    Donella-Deana A; Krinks MH; Ruzzene M; Klee C; Pinna LA
    Eur J Biochem; 1994 Jan; 219(1-2):109-17. PubMed ID: 7508382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first green lineage cdc25 dual-specificity phosphatase.
    Khadaroo B; Robbens S; Ferraz C; Derelle E; Eychenié S; Cooke R; Peaucellier G; Delseny M; Demaille J; Van de Peer Y; Picard A; Moreau H
    Cell Cycle; 2004 Apr; 3(4):513-8. PubMed ID: 15004533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization and deletion analysis of recombinant human protein phosphatase 2C alpha.
    Marley AE; Sullivan JE; Carling D; Abbott WM; Smith GJ; Taylor IW; Carey F; Beri RK
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):801-6. PubMed ID: 9003365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Cdc25B phosphatase with the small molecule substrate p-nitrophenyl phosphate from QM/MM-MFEP calculations.
    Parks JM; Hu H; Rudolph J; Yang W
    J Phys Chem B; 2009 Apr; 113(15):5217-24. PubMed ID: 19301836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase.
    Landrieu I; Hassan S; Sauty M; Dewitte F; Wieruszeski JM; Inzé D; De Veylder L; Lippens G
    Biochem Biophys Res Commun; 2004 Sep; 322(3):734-9. PubMed ID: 15336525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of the catalytic domain of human cdc25B.
    Gottlin EB; Xu X; Epstein DM; Burke SP; Eckstein JW; Ballou DP; Dixon JE
    J Biol Chem; 1996 Nov; 271(44):27445-9. PubMed ID: 8910325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and characterization of a novel human protein phosphatase, LMW-DSP3.
    Cheng H; Gao Q; Jiang M; Ma Y; Ni X; Guo L; Jin W; Cao G; Ji C; Ying K; Xu W; Gu S; Ma Y; Xie Y; Mao Y
    Int J Biochem Cell Biol; 2003 Feb; 35(2):226-34. PubMed ID: 12479873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PrpZ, a Salmonella enterica serovar Typhi serine/threonine protein phosphatase 2C with dual substrate specificity.
    Lai SM; Moual HL
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1159-1167. PubMed ID: 15817783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of Ca(2+)/calmodulin-dependent protein kinase phosphatase: kinetic studies using synthetic phosphopeptides as model substrates.
    Ishida A; Shigeri Y; Tatsu Y; Endo Y; Kameshita I; Okuno S; Kitani T; Takeuchi M; Yumoto N; Fujisawa H
    J Biochem; 2001 May; 129(5):745-53. PubMed ID: 11328597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein.
    Strausfeld U; Labbé JC; Fesquet D; Cavadore JC; Picard A; Sadhu K; Russell P; Dorée M
    Nature; 1991 May; 351(6323):242-5. PubMed ID: 1828290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15.
    Sebastian B; Kakizuka A; Hunter T
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3521-4. PubMed ID: 8475101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of the P box, a domain in cyclin B required for the activation of Cdc25.
    Zheng XF; Ruderman JV
    Cell; 1993 Oct; 75(1):155-64. PubMed ID: 8402895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2.
    Lee MS; Ogg S; Xu M; Parker LL; Donoghue DJ; Maller JL; Piwnica-Worms H
    Mol Biol Cell; 1992 Jan; 3(1):73-84. PubMed ID: 1312880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.