These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11983319)

  • 41. Altered basal ganglia output during self-restraint.
    Gu BM; Berke JD
    Elife; 2022 Nov; 11():. PubMed ID: 36321810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neurons in dopamine-rich areas of the rat medial midbrain predominantly encode the outcome-related rather than behavioural switching properties of conditioned stimuli.
    Wilson DI; Bowman EM
    Eur J Neurosci; 2006 Jan; 23(1):205-18. PubMed ID: 16420430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dose and behavioral context dependent inhibition of movement and basal ganglia neural activity by Delta-9-tetrahydrocannabinol during spontaneous and treadmill locomotion tasks in rats.
    Shi LH; Luo F; Woodward DJ; Chang JY
    Synapse; 2005 Jan; 55(1):1-16. PubMed ID: 15499609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Responses of substantia nigra pars reticulata neurons to GABA and SKF 38393 in 6-hydroxydopamine-lesioned rats are differentially affected by continuous and intermittent levodopa administration.
    Weick BG; Engber TM; Susel Z; Chase TN; Walters JR
    Brain Res; 1990 Jul; 523(1):16-22. PubMed ID: 2119854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of rat substantia nigra pars reticulata units to cortical stimulation.
    Fujimoto K; Kita H
    Neurosci Lett; 1992 Aug; 142(1):105-9. PubMed ID: 1407709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monkey substantia nigra (pars reticulata) neuron discharges during operant feeding.
    Nishino H; Ono T; Fukuda M; Sasaki K
    Brain Res; 1985 May; 334(1):190-3. PubMed ID: 3922564
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Basal ganglia neural activity during operant feeding behavior in the monkey: relation to sensory integration and motor execution.
    Nishino H; Hattori S; Muramoto K; Ono T
    Brain Res Bull; 1991; 27(3-4):463-8. PubMed ID: 1959047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activity of substantia nigra neurons in the cat brain during a self-initiated behavioral act.
    Sidyakin VG; Pavlenko VB; Kulichenko AM; Gorelova EV; Pavlenko OM
    Neurosci Behav Physiol; 1998; 28(3):238-43. PubMed ID: 9682227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cue-evoked firing of nucleus accumbens neurons encodes motivational significance during a discriminative stimulus task.
    Nicola SM; Yun IA; Wakabayashi KT; Fields HL
    J Neurophysiol; 2004 Apr; 91(4):1840-65. PubMed ID: 14645377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential effects of D1 and D2 dopamine receptor agonists on substantia nigra pars reticulata neurons.
    Waszczak BL
    Brain Res; 1990 Apr; 513(1):125-35. PubMed ID: 2140951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement.
    Sato M; Hikosaka O
    J Neurosci; 2002 Mar; 22(6):2363-73. PubMed ID: 11896175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bidirectional modulation of substantia nigra activity by motivational state.
    Rossi MA; Fan D; Barter JW; Yin HH
    PLoS One; 2013; 8(8):e71598. PubMed ID: 23936522
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activity of neurons in the ventral tegmental region of the behaving monkey.
    Fabre M; Rolls ET; Ashton JP; Williams G
    Behav Brain Res; 1983 Aug; 9(2):213-35. PubMed ID: 6309194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrophysiological effects of SKF 38393 in rats with reserpine treatment and 6-hydroxydopamine-induced nigrostriatal lesions reveal two types of plasticity in D1 dopamine receptor modulation of basal ganglia output.
    Huang KX; Walters JR
    J Pharmacol Exp Ther; 1994 Dec; 271(3):1434-43. PubMed ID: 7996456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GABAergic control of substantia nigra dopaminergic neurons.
    Tepper JM; Lee CR
    Prog Brain Res; 2007; 160():189-208. PubMed ID: 17499115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease.
    Milosevic L; Kalia SK; Hodaie M; Lozano AM; Fasano A; Popovic MR; Hutchison WD
    Brain; 2018 Jan; 141(1):177-190. PubMed ID: 29236966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activity of neurons in the cat substantia nigra pars reticulata during drinking.
    Joseph JP; Boussaoud D; Biguer B
    Exp Brain Res; 1985; 60(2):375-9. PubMed ID: 4054279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lack of spike-count and spike-time correlations in the substantia nigra reticulata despite overlap of neural responses.
    Nevet A; Morris G; Saban G; Arkadir D; Bergman H
    J Neurophysiol; 2007 Oct; 98(4):2232-43. PubMed ID: 17699698
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dopamine modulation of the effects of gamma-aminobutyric acid on substantia nigra pars reticulata neurons.
    Waszcak BL; Walters JR
    Science; 1983 Apr; 220(4593):218-21. PubMed ID: 6828891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders.
    Meyer-Luehmann M; Thompson JF; Berridge KC; Aldridge JW
    Eur J Neurosci; 2002 Oct; 16(8):1599-608. PubMed ID: 12405974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.