BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 11983871)

  • 21. OhrR of Mycobacterium smegmatis senses and responds to intracellular organic hydroperoxide stress.
    Garnica OA; Das K; Dhandayuthapani S
    Sci Rep; 2017 Jun; 7(1):3922. PubMed ID: 28634401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors.
    Helmann JD; Wu MF; Gaballa A; Kobel PA; Morshedi MM; Fawcett P; Paddon C
    J Bacteriol; 2003 Jan; 185(1):243-53. PubMed ID: 12486061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The repressor for an organic peroxide-inducible operon is uniquely regulated at multiple levels.
    Mongkolsuk S; Panmanee W; Atichartpongkul S; Vattanaviboon P; Whangsuk W; Fuangthong M; Eiamphungporn W; Sukchawalit R; Utamapongchai S
    Mol Microbiol; 2002 May; 44(3):793-802. PubMed ID: 11994159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications.
    Sukchawalit R; Loprasert S; Atichartpongkul S; Mongkolsuk S
    J Bacteriol; 2001 Aug; 183(15):4405-12. PubMed ID: 11443074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analyses of the regulatory mechanism and physiological roles of Pseudomonas aeruginosa OhrR, a transcription regulator and a sensor of organic hydroperoxides.
    Atichartpongkul S; Fuangthong M; Vattanaviboon P; Mongkolsuk S
    J Bacteriol; 2010 Apr; 192(8):2093-101. PubMed ID: 20139188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite.
    Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B
    Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR.
    Newberry KJ; Fuangthong M; Panmanee W; Mongkolsuk S; Brennan RG
    Mol Cell; 2007 Nov; 28(4):652-64. PubMed ID: 18042459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiol-mediated disassembly and reassembly of [2Fe-2S] clusters in the redox-regulated transcription factor SoxR.
    Ding H; Demple B
    Biochemistry; 1998 Dec; 37(49):17280-6. PubMed ID: 9860842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of inducible peroxide stress responses.
    Mongkolsuk S; Helmann JD
    Mol Microbiol; 2002 Jul; 45(1):9-15. PubMed ID: 12100544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of the OxyR transcription factor by reversible disulfide bond formation.
    Zheng M; Aslund F; Storz G
    Science; 1998 Mar; 279(5357):1718-21. PubMed ID: 9497290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae.
    Takanishi CL; Wood MJ
    J Proteome Res; 2011 Jun; 10(6):2715-24. PubMed ID: 21476607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox regulation in Bacillus subtilis: The bacilliredoxins BrxA(YphP) and BrxB(YqiW) function in de-bacillithiolation of S-bacillithiolated OhrR and MetE.
    Gaballa A; Chi BK; Roberts AA; Becher D; Hamilton CJ; Antelmann H; Helmann JD
    Antioxid Redox Signal; 2014 Jul; 21(3):357-67. PubMed ID: 24313874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis.
    Traoré DA; El Ghazouani A; Ilango S; Dupuy J; Jacquamet L; Ferrer JL; Caux-Thang C; Duarte V; Latour JM
    Mol Microbiol; 2006 Sep; 61(5):1211-9. PubMed ID: 16925555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics.
    Chi BK; Gronau K; Mäder U; Hessling B; Becher D; Antelmann H
    Mol Cell Proteomics; 2011 Nov; 10(11):M111.009506. PubMed ID: 21749987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of Organic Hydroperoxide Stress Response by Two OhrR Homologs in Pseudomonas aeruginosa.
    Atichartpongkul S; Vattanaviboon P; Wisitkamol R; Jaroensuk J; Mongkolsuk S; Fuangthong M
    PLoS One; 2016; 11(8):e0161982. PubMed ID: 27560944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A scaffold protein that chaperones a cysteine-sulfenic acid in H
    Bersweiler A; D'Autréaux B; Mazon H; Kriznik A; Belli G; Delaunay-Moisan A; Toledano MB; Rahuel-Clermont S
    Nat Chem Biol; 2017 Aug; 13(8):909-915. PubMed ID: 28628095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox sensing by prokaryotic transcription factors.
    Zheng M; Storz G
    Biochem Pharmacol; 2000 Jan; 59(1):1-6. PubMed ID: 10605928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein sulfenic acid formation: from cellular damage to redox regulation.
    Roos G; Messens J
    Free Radic Biol Med; 2011 Jul; 51(2):314-26. PubMed ID: 21605662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.