These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11983895)

  • 1. Modulation of tRNAAla identity by inorganic pyrophosphatase.
    Wolfson AD; Uhlenbeck OC
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5965-70. PubMed ID: 11983895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reliability of in vivo structure-function analysis of tRNA aminoacylation.
    McClain WH; Jou YY; Bhattacharya S; Gabriel K; Schneider J
    J Mol Biol; 1999 Jul; 290(2):391-409. PubMed ID: 10390340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli.
    Barends S; Wower J; Kraal B
    Biochemistry; 2000 Mar; 39(10):2652-8. PubMed ID: 10704215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the 3' end of a tRNA binds to a site in the adenylate synthesis domain of an aminoacyl-tRNA synthetase.
    Hill K; Schimmel P
    Biochemistry; 1989 Mar; 28(6):2577-86. PubMed ID: 2543446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutant aminoacyl-tRNA synthetase that compensates for a mutation in the major identity determinant of its tRNA.
    Miller WT; Hou YM; Schimmel P
    Biochemistry; 1991 Mar; 30(10):2635-41. PubMed ID: 2001352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct domains of tRNA synthetase recognize the same base pair.
    Beebe K; Mock M; Merriman E; Schimmel P
    Nature; 2008 Jan; 451(7174):90-3. PubMed ID: 18172502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of discrimination of tRNA(Phe) from E. coli by yeast phenylalanine-tRNA-synthetase].
    Khvorova AM; Motorin IuA; Vol'fson AD
    Biokhimiia; 1993 Apr; 58(4):613-9. PubMed ID: 8389606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric interaction of nucleotides and tRNA(ala) with E. coli alanyl-tRNA synthetase.
    Dignam JD; Guo J; Griffith WP; Garbett NC; Holloway A; Mueser T
    Biochemistry; 2011 Nov; 50(45):9886-900. PubMed ID: 21985608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation?
    Ehrenberg M; Rojas AM; Weiser J; Kurland CG
    J Mol Biol; 1990 Feb; 211(4):739-49. PubMed ID: 2179565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA.
    Barends S; Karzai AW; Sauer RT; Wower J; Kraal B
    J Mol Biol; 2001 Nov; 314(1):9-21. PubMed ID: 11724528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Escherichia coli argU10(Ts) phenotype is caused by a reduction in the cellular level of the argU tRNA for the rare codons AGA and AGG.
    Sakamoto K; Ishimaru S; Kobayashi T; Walker JR; Yokoyama S
    J Bacteriol; 2004 Sep; 186(17):5899-905. PubMed ID: 15317795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
    Zhang CM; Perona JJ; Ryu K; Francklyn C; Hou YM
    J Mol Biol; 2006 Aug; 361(2):300-11. PubMed ID: 16843487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA recognition by designed peptide fusion creates "artificial" tRNA synthetase.
    Frugier M; Giege R; Schimmel P
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7471-5. PubMed ID: 12796515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system.
    Doi Y; Ohtsuki T; Shimizu Y; Ueda T; Sisido M
    J Am Chem Soc; 2007 Nov; 129(46):14458-62. PubMed ID: 17958427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of mitochondrial elongation factors Tu.Ts with aminoacyl-tRNA.
    Benkowski LA; Takemoto C; Ott G; Beikman M; Ueda T; Watanabe K; Sprinzl M; Spremulli LL
    Nucleic Acids Symp Ser; 1995; (33):163-6. PubMed ID: 8643359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro.
    Nameki N; Tadaki T; Muto A; Himeno H
    J Mol Biol; 1999 May; 289(1):1-7. PubMed ID: 10339400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuous spectrophotometric assay for the aminoacylation of transfer RNA by alanyl-transfer RNA synthetase.
    Wu MX; Hill KA
    Anal Biochem; 1993 Jun; 211(2):320-3. PubMed ID: 8317708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.