These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 11984624)
1. Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Hawkes CV; Flechtner VR Microb Ecol; 2002 Jan; 43(1):1-12. PubMed ID: 11984624 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Veluci RM; Neher DA; Weicht TR Microb Ecol; 2006 Feb; 51(2):189-96. PubMed ID: 16453200 [TBL] [Abstract][Full Text] [Related]
3. Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland. Whicker JJ; Breshears DD; Wasiolek PT; Kirchner TB; Tavani RA; Schoep DA; Rodgers JC J Environ Qual; 2002; 31(2):599-612. PubMed ID: 11931452 [TBL] [Abstract][Full Text] [Related]
4. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Caldwell MM; Bornman JF; Ballaré CL; Flint SD; Kulandaivelu G Photochem Photobiol Sci; 2007 Mar; 6(3):252-66. PubMed ID: 17344961 [TBL] [Abstract][Full Text] [Related]
5. Response of desert biological soil crusts to alterations in precipitation frequency. Belnap J; Phillips SL; Miller ME Oecologia; 2004 Oct; 141(2):306-16. PubMed ID: 14689292 [TBL] [Abstract][Full Text] [Related]
6. Disturbance to biocrusts decreased cyanobacteria, N-fixer abundance, and grass leaf N but increased fungal abundance. Adelizzi R; O'Brien EA; Hoellrich M; Rudgers JA; Mann M; Fernandes VMC; Darrouzet-Nardi A; Stricker E Ecology; 2022 Apr; 103(4):e3656. PubMed ID: 35132623 [TBL] [Abstract][Full Text] [Related]
7. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). Nagy ML; Pérez A; Garcia-Pichel F FEMS Microbiol Ecol; 2005 Oct; 54(2):233-45. PubMed ID: 16332322 [TBL] [Abstract][Full Text] [Related]
8. Temporal variation in community composition, pigmentation, and F(v)/F(m) of desert cyanobacterial soil crusts. Bowker MA; Reed SC; Belnap J; Phillips SL Microb Ecol; 2002 Jan; 43(1):13-25. PubMed ID: 11984625 [TBL] [Abstract][Full Text] [Related]
9. Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Lan S; Hu C; Rao B; Wu L; Zhang D; Liu Y Sci China Life Sci; 2010 Sep; 53(9):1135-41. PubMed ID: 21104374 [TBL] [Abstract][Full Text] [Related]
10. A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev Desert. Russow R; Veste M; Böhme F Rapid Commun Mass Spectrom; 2005; 19(23):3451-6. PubMed ID: 16261635 [TBL] [Abstract][Full Text] [Related]
11. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Wierzchos J; Cámara B; de Los Ríos A; Davila AF; Sánchez Almazo IM; Artieda O; Wierzchos K; Gómez-Silva B; McKay C; Ascaso C Geobiology; 2011 Jan; 9(1):44-60. PubMed ID: 20726901 [TBL] [Abstract][Full Text] [Related]
12. Analysis of environmental factors determining development and succession in biological soil crusts. Lan S; Wu L; Zhang D; Hu C Sci Total Environ; 2015 Dec; 538():492-9. PubMed ID: 26318686 [TBL] [Abstract][Full Text] [Related]
13. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Büdel B; Darienko T; Deutschewitz K; Dojani S; Friedl T; Mohr KI; Salisch M; Reisser W; Weber B Microb Ecol; 2009 Feb; 57(2):229-47. PubMed ID: 18850242 [TBL] [Abstract][Full Text] [Related]
15. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. Abed RM; Al Kharusi S; Schramm A; Robinson MD FEMS Microbiol Ecol; 2010 Jun; 72(3):418-28. PubMed ID: 20298501 [TBL] [Abstract][Full Text] [Related]
16. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts. Darby BJ; Housman DC; Zaki AM; Shamout Y; Adl SM; Belnap J; Neher DA J Eukaryot Microbiol; 2006; 53(6):507-14. PubMed ID: 17123415 [TBL] [Abstract][Full Text] [Related]
17. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Sayer EJ Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580 [TBL] [Abstract][Full Text] [Related]
18. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Langhans TM; Storm C; Schwabe A Microb Ecol; 2009 Aug; 58(2):394-407. PubMed ID: 19479305 [TBL] [Abstract][Full Text] [Related]
19. Altered ecohydrologic response drives native shrub loss under conditions of elevated nitrogen deposition. Wood YA; Meixner T; Shouse PJ; Allen EB J Environ Qual; 2006; 35(1):76-92. PubMed ID: 16391279 [TBL] [Abstract][Full Text] [Related]
20. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert. Godínez-Alvarez H; Morín C; Rivera-Aguilar V Plant Biol (Stuttg); 2012 Jan; 14(1):157-62. PubMed ID: 21973053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]