BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 11984632)

  • 1. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina.
    Wendt-Potthoff K; Koschorreck M
    Microb Ecol; 2002 Jan; 43(1):92-106. PubMed ID: 11984632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast diversity in the acidic Rio Agrio-Lake Caviahue volcanic environment (Patagonia, Argentina).
    Russo G; Libkind D; Sampaio JP; van Broock MR
    FEMS Microbiol Ecol; 2008 Sep; 65(3):415-24. PubMed ID: 18537834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids.
    Poerschmann J; Koschorreck M; Górecki T
    Sci Total Environ; 2012 Jan; 414():614-23. PubMed ID: 22119026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.
    Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB
    Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment.
    Ramamoorthy S; Piotrowski JS; Langner HW; Holben WE; Morra MJ; Rosenzweig RF
    J Environ Qual; 2009; 38(2):675-84. PubMed ID: 19244488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina.
    Koschorreck M; Wendt-Potthoff K; Geller W
    Environ Sci Technol; 2003 Mar; 37(6):1159-62. PubMed ID: 12680669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake.
    Kleinsteuber S; Müller FD; Chatzinotas A; Wendt-Potthoff K; Harms H
    FEMS Microbiol Ecol; 2008 Jan; 63(1):107-17. PubMed ID: 18028401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake.
    Macdonald BC; Smith J; Keene AF; Tunks M; Kinsela A; White I
    Sci Total Environ; 2004 Aug; 329(1-3):115-30. PubMed ID: 15262162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver contamination on abiotic and biotic compartments of Nahuel Huapi National Park lakes, Patagonia, Argentina.
    Guevara SR; Arribére M; Bubach D; Vigliano P; Rizzo A; Alonso M; Sánchez R
    Sci Total Environ; 2005 Jan; 336(1-3):119-34. PubMed ID: 15589254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial stabilization of riverine sediments by extracellular polymeric substances.
    Gerbersdorf SU; Jancke T; Westrich B; Paterson DM
    Geobiology; 2008 Jan; 6(1):57-69. PubMed ID: 18380886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia.
    Cuevas M; Francisco I; Díaz-González F; Diaz M; Quatrini R; Beamud G; Pedrozo F; Temporetti P
    Front Microbiol; 2024; 15():1335978. PubMed ID: 38410393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA).
    Angelo RT; Cringan MS; Chamberlain DL; Stahl AJ; Haslouer SG; Goodrich CA
    Sci Total Environ; 2007 Oct; 384(1-3):467-96. PubMed ID: 17669474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of microbial community between two shallow freshwater lakes in middle Yangtze basin, East China.
    Tong Y; Lin G; Ke X; Liu F; Zhu G; Gao G; Shen J
    Chemosphere; 2005 Jun; 60(1):85-92. PubMed ID: 15910906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large differences in the fraction of active bacteria in plankton, sediments, and biofilm.
    Haglund AL; Törnblom E; Boström B; Tranvik L
    Microb Ecol; 2002 Mar; 43(2):232-41. PubMed ID: 12023730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.