BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 11984632)

  • 21. [Intensities of microbial production and oxidation of methane in bottom sediments and water mass of the Black Sea].
    Gal'chenko VF; Lein AIu; Ivanov MV
    Mikrobiologiia; 2004; 73(2):271-83. PubMed ID: 15198040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments.
    Hutchins CM; Teasdale PR; Lee J; Simpson SL
    Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions.
    Chen W; Song L; Peng L; Wan N; Zhang X; Gan N
    Water Res; 2008 Feb; 42(3):763-73. PubMed ID: 17761208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.
    Nicomrat D; Dick WA; Tuovinen OH
    J Environ Qual; 2006; 35(4):1329-37. PubMed ID: 16825452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Intensity of the microbiological processes of the methane cycle in different types of Baltic lakes].
    Dziuban AN
    Mikrobiologiia; 2002; 71(1):111-8. PubMed ID: 11910799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enrichment and isolation of acid-tolerant sulfate-reducing microorganisms in the anoxic, acidic hot spring sediments from Copahue volcano, Argentina.
    Willis G; Nancucheo I; Hedrich S; Giaveno A; Donati E; Johnson DB
    FEMS Microbiol Ecol; 2019 Dec; 95(12):. PubMed ID: 31665270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The microbiology of acidic mine waters.
    Johnson DB; Hallberg KB
    Res Microbiol; 2003 Sep; 154(7):466-73. PubMed ID: 14499932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial Community Composition and Ecology of an Acidic Aquatic Environment: The Tinto River, Spain.
    López-Archilla AI; Marin I; Amils R
    Microb Ecol; 2001 Jan; 41(1):20-35. PubMed ID: 11252161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France).
    Cébron A; Garnier J
    Water Res; 2005 Dec; 39(20):4979-92. PubMed ID: 16303163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Sulfate reduction and methanogenesis in the Shira and Shunet meromictic lakes (Khakass Republic, Russia)].
    Kallistova AIu; Kevbrina MV; Pimenov NV; Rusanov II; Rogozin DIu; Wehrli B; Nozhevnikova AN
    Mikrobiologiia; 2006; 75(6):828-35. PubMed ID: 17205809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh.
    Ullrich SM; Ilyushchenko MA; Kamberov IM; Tanton TW
    Sci Total Environ; 2007 Aug; 381(1-3):1-16. PubMed ID: 17475310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial distribution and diversity in saturated, high pH, uranium mine tailings, Saskatchewan, Canada.
    Wolfaardt GM; Hendry MJ; Korber DR
    Can J Microbiol; 2008 Nov; 54(11):932-40. PubMed ID: 18997849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron and total organic carbon shape the spatial distribution pattern of sediment Fe(III) reducing bacteria in a volcanic lake, NE China.
    Zhan Y; Yang M; Zhang Y; Yang J; Wang W; Yan L; Zhang S
    World J Microbiol Biotechnol; 2021 Aug; 37(9):155. PubMed ID: 34398324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metal capture by autochthonous yeasts from a volcanic influenced environment of Patagonia.
    Russo G; Libkind D; Giraudo MR; Delgado OD
    J Basic Microbiol; 2016 Nov; 56(11):1203-1211. PubMed ID: 27427287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural alkalinity generation in neutral lakes affected by acid mine drainage.
    Koschorreck M; Tittel J
    J Environ Qual; 2007; 36(4):1163-71. PubMed ID: 17596625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partitioning variation of heavy metals in contaminated river sediment via bioleaching: effect of sulfur added to total solids ratio.
    Tsai LJ; Yu KC; Chen SF; Kung PY; Chang CY; Lin CH
    Water Res; 2003 Nov; 37(19):4623-30. PubMed ID: 14568048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epilithic algae distribution along a chemical gradient in a naturally acidic river, Río Agrio (Patagonia, Argentina).
    Baffico GD
    Microb Ecol; 2010 Apr; 59(3):533-45. PubMed ID: 20107781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.