BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11984652)

  • 1. A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles.
    Eskiizmirliler S; Forestier N; Tondu B; Darlot C
    Biol Cybern; 2002 May; 86(5):379-94. PubMed ID: 11984652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems.
    Porrill J; Dean P
    Neural Comput; 2007 Jan; 19(1):170-93. PubMed ID: 17134321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance.
    Jo S; Massaquoi SG
    Biol Cybern; 2004 Sep; 91(3):188-202. PubMed ID: 15372241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time spiking cerebellum model for learning robot control.
    Carrillo RR; Ros E; Boucheny C; Coenen OJ
    Biosystems; 2008; 94(1-2):18-27. PubMed ID: 18616974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of arm trajectory from the neural activities of the primary motor cortex with modular connectionist architecture.
    Choi K; Hirose H; Sakurai Y; Iijima T; Koike Y
    Neural Netw; 2009 Nov; 22(9):1214-23. PubMed ID: 19793637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups.
    Lilly JH; Quesada PM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):349-59. PubMed ID: 15473198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):103-13. PubMed ID: 16154874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement.
    Ivanusic JJ; Bourke DW; Xu ZM; Butler EG; Horne MK
    Brain Res; 2005 Apr; 1041(2):181-97. PubMed ID: 15829227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebellar circuitry as a neuronal machine.
    Ito M
    Prog Neurobiol; 2006; 78(3-5):272-303. PubMed ID: 16759785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Technol Health Care; 2004; 12(6):425-38. PubMed ID: 15671597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
    Haith A; Vijayakumar S
    Biol Cybern; 2009 Jan; 100(1):81-95. PubMed ID: 18941774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics.
    Contreras-Vidal JL; Grossberg S; Bullock D
    Learn Mem; 1997; 3(6):475-502. PubMed ID: 10456112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements.
    Cheron G; Draye JP; Bourgeios M; Libert G
    IEEE Trans Biomed Eng; 1996 May; 43(5):552-8. PubMed ID: 8849468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity.
    Moreno-Valenzuela J; González-Hernández L
    ISA Trans; 2011 Jan; 50(1):131-40. PubMed ID: 20800835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar learning of accurate predictive control for fast-reaching movements.
    Spoelstra J; Schweighofer N; Arbib MA
    Biol Cybern; 2000 Apr; 82(4):321-33. PubMed ID: 10804064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.