BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11985478)

  • 21. Design, synthesis, and biological evaluation of new growth inhibitors of Trypanosoma cruzi (epimastigotes).
    Schvartzapel AJ; Zhong L; Docampo R; Rodriguez JB; Gros EG
    J Med Chem; 1997 Jul; 40(15):2314-22. PubMed ID: 9240347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial Dysfunction Induced by N-Butyl-1-(4-Dimethylamino)Phenyl-1,2,3,4-Tetrahydro-β-Carboline-3-Carboxamide Is Required for Cell Death of Trypanosoma cruzi.
    Volpato H; Desoti VC; Valdez RH; Ueda-Nakamura T; Silva Sde O; Sarragiotto MH; Nakamura CV
    PLoS One; 2015; 10(6):e0130652. PubMed ID: 26086449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of novel quinine analogs and evaluation of their effects on Trypanosoma cruzi.
    Ceole LF; Gandhi H; Villamizar LH; Soares MJ; O'Sullivan TP
    Future Med Chem; 2018 Feb; 10(4):391-408. PubMed ID: 29380636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles.
    Bombaça ACS; Viana PG; Santos ACC; Silva TL; Rodrigues ABM; Guimarães ACR; Goulart MOF; da Silva Júnior EN; Menna-Barreto RFS
    Free Radic Biol Med; 2019 Jan; 130():408-418. PubMed ID: 30445126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and trypanocidal activity of ent-kaurane glycosides.
    Batista R; Humberto JL; Chiari E; de Oliveira AB
    Bioorg Med Chem; 2007 Jan; 15(1):381-91. PubMed ID: 17055730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrimido[1,2-a]quinoxaline 6-oxide and phenazine 5,10-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi.
    Lavaggi ML; Aguirre G; Boiani L; Orelli L; García B; Cerecetto H; González M
    Eur J Med Chem; 2008 Aug; 43(8):1737-41. PubMed ID: 18068272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy.
    Pinto CN; Dantas AP; De Moura KC; Emery FS; Polequevitch PF; Pinto MC; de Castro SL; Pinto AV
    Arzneimittelforschung; 2000 Dec; 50(12):1120-8. PubMed ID: 11190779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents.
    Elizondo-Jimenez S; Moreno-Herrera A; Reyes-Olivares R; Dorantes-Gonzalez E; Nogueda-Torres B; Oliveira EAG; Romeiro NC; Lima LM; Palos I; Rivera G
    Med Chem; 2017; 13(2):149-158. PubMed ID: 27396731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.
    Jardim GAM; Silva TL; Goulart MOF; de Simone CA; Barbosa JMC; Salomão K; de Castro SL; Bower JF; da Silva Júnior EN
    Eur J Med Chem; 2017 Aug; 136():406-419. PubMed ID: 28521262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi.
    Menna-Barreto RF; Corrêa JR; Cascabulho CM; Fernandes MC; Pinto AV; Soares MJ; De Castro SL
    Parasitology; 2009 Apr; 136(5):499-510. PubMed ID: 19281638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and trypanocidal activity of 1,4-bis-(3,4,5-trimethoxy-phenyl)-1,4-butanediol and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol.
    Bernardes LS; Kato MJ; Albuquerque S; Carvalho I
    Bioorg Med Chem; 2006 Nov; 14(21):7075-82. PubMed ID: 16908164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo trypanocidal evaluation of nickel complexes with an azapurine derivative against Trypanosoma cruzi.
    Maldonado CR; Marín C; Olmo F; Huertas O; Quirós M; Sánchez-Moreno M; Rosales MJ; Salas JM
    J Med Chem; 2010 Oct; 53(19):6964-72. PubMed ID: 20812723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity.
    Salmon-Chemin L; Buisine E; Yardley V; Kohler S; Debreu MA; Landry V; Sergheraert C; Croft SL; Krauth-Siegel RL; Davioud-Charvet E
    J Med Chem; 2001 Feb; 44(4):548-65. PubMed ID: 11170645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trypanocidal agents with low cytotoxicity to mammalian cell line: a comparison of the theoretical and biological features of lapachone derivatives.
    Ferreira VF; Jorqueira A; Souza AM; da Silva MN; de Souza MC; Gouvêa RM; Rodrigues CR; Pinto AV; Castro HC; Santos DO; Araújo HP; Bourguignon SC
    Bioorg Med Chem; 2006 Aug; 14(16):5459-66. PubMed ID: 16725327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, 2D-QSAR Studies and Biological Evaluation of Quinazoline Derivatives as Potent Anti-Trypanosoma cruzi Agents.
    Bollini M; Bruno AM; Niño ME; Casal JJ; Sasiambarrena LD; Valdez DAG; Battini L; Puente VR; Lombardo ME
    Med Chem; 2019; 15(3):265-276. PubMed ID: 30295191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of a beta-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles.
    Menna-Barreto RF; Henriques-Pons A; Pinto AV; Morgado-Diaz JA; Soares MJ; De Castro SL
    J Antimicrob Chemother; 2005 Dec; 56(6):1034-41. PubMed ID: 16269551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and Evaluation of Quinone Derivatives for Activity against Trypanosome cruzi.
    Suto Y; Ascencio T; Nobuta T; Yamagiwa N; Onizuka Y; Ishii M; Kanemitsu K; Nakajima-Shimada J
    Chem Pharm Bull (Tokyo); 2021; 69(12):1195-1199. PubMed ID: 34853286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-Trypanosoma activity of some natural stilbenoids and synthetic related heterocyclic compounds.
    del Olmo E; Armas MG; López-Pérez JL; Ruiz G; Vargas F; Giménez A; Deharo E; San Feliciano A
    Bioorg Med Chem Lett; 2001 Oct; 11(20):2755-7. PubMed ID: 11591517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the structure-activity relationships of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds.
    Palace-Berl F; Pasqualoto KFM; Zingales B; Moraes CB; Bury M; Franco CH; da Silva Neto AL; Murayama JS; Nunes SL; Silva MN; Tavares LC
    Eur J Med Chem; 2018 Jan; 144():29-40. PubMed ID: 29247858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and biological evaluation of new sulfonamide derivatives as potential anti-Trypanosoma cruzi agents.
    Bocanegra-Garcia V; Villalobos-Rocha JC; Nogueda-Torres B; Lemus-Hernandez ME; Camargo-Ordonez A; Rosas-Garcia NM; Rivera G
    Med Chem; 2012 Nov; 8(6):1039-44. PubMed ID: 22762161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.