BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11985594)

  • 1. Bromoperoxidase activity of vanadate-substituted acid phosphatases from Shigella flexneri and Salmonella enterica ser. typhimurium.
    Tanaka N; Dumay V; Liao Q; Lange AJ; Wever R
    Eur J Biochem; 2002 Apr; 269(8):2162-7. PubMed ID: 11985594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation and dephosphorylation of polyhydroxy compounds by class A bacterial acid phosphatases.
    Tanaka N; Hasan Z; Hartog AF; van Herk T; Wever R; Sanders RJ
    Org Biomol Chem; 2003 Aug; 1(16):2833-9. PubMed ID: 12968332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of phoN-Sf, a gene on the large plasmid of Shigella flexneri 2a encoding a nonspecific phosphatase.
    Uchiya KI; Tohsuji M; Nikai T; Sugihara H; Sasakawa C
    J Bacteriol; 1996 Aug; 178(15):4548-54. PubMed ID: 8755883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of vanadium-containing bromoperoxidases.
    Wever R; Krenn BE; De Boer E; Offenberg H; Plat H
    Prog Clin Biol Res; 1988; 274():477-93. PubMed ID: 3406034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes.
    Littlechild J; Garcia-Rodriguez E; Dalby A; Isupov M
    J Mol Recognit; 2002; 15(5):291-6. PubMed ID: 12447906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis.
    ten Brink HB; Schoemaker HE; Wever R
    Eur J Biochem; 2001 Jan; 268(1):132-8. PubMed ID: 11121113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein engineering of class-A non-specific acid phosphatase (PhoN) of Salmonella typhimurium: modulation of the pH-activity profile.
    Makde RD; Dikshit K; Kumar V
    Biomol Eng; 2006 Oct; 23(5):247-51. PubMed ID: 16901752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of the Salmonella typhimurium phoN gene, which encodes nonspecific acid phosphatase.
    Kasahara M; Nakata A; Shinagawa H
    J Bacteriol; 1991 Nov; 173(21):6760-5. PubMed ID: 1938882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of halogen specificity of a vanadium-dependent bromoperoxidase.
    Ohshiro T; Littlechild J; Garcia-Rodriguez E; Isupov MN; Iida Y; Kobayashi T; Izumi Y
    Protein Sci; 2004 Jun; 13(6):1566-71. PubMed ID: 15133166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadate-dependent bromoperoxidases from Ascophyllum nodosum in the synthesis of brominated phenols and pyrroles.
    Wischang D; Radlow M; Hartung J
    Dalton Trans; 2013 Sep; 42(33):11926-40. PubMed ID: 23881071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding to vanadate-dependent bromoperoxidase from Ascophyllum nodosum: a vanadium K-edge XAS approach.
    Christmann U; Dau H; Haumann M; Kiss E; Liebisch P; Rehder D; Santoni G; Schulzke C
    Dalton Trans; 2004 Aug; (16):2534-40. PubMed ID: 15303169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vanadium-dependent bromoperoxidase in the marine red alga Kappaphycus alvarezii (Doty) Doty displays clear substrate specificity.
    Kamenarska Z; Taniguchi T; Ohsawa N; Hiraoka M; Itoh N
    Phytochemistry; 2007 May; 68(10):1358-66. PubMed ID: 17434548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The brown alga Ascophyllum nodosum contains two different vanadium bromoperoxidases.
    Krenn BE; Tromp MG; Wever R
    J Biol Chem; 1989 Nov; 264(32):19287-92. PubMed ID: 2553736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes.
    Kier LD; Weppelman RM; Ames BN
    J Bacteriol; 1979 Apr; 138(1):155-61. PubMed ID: 374361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning, homology modeling and site-directed mutagenesis of vanadium-dependent bromoperoxidase (GcVBPO1) from Gracilaria changii (Rhodophyta).
    Baharum H; Chu WC; Teo SS; Ng KY; Rahim RA; Ho CL
    Phytochemistry; 2013 Aug; 92():49-59. PubMed ID: 23684235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis.
    Carter JN; Beatty KE; Simpson MT; Butler A
    J Inorg Biochem; 2002 Jul; 91(1):59-69. PubMed ID: 12121762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mutational analysis of the PhoN protein of Salmonella typhimurium provide insight into mechanistic details.
    Makde RD; Mahajan SK; Kumar V
    Biochemistry; 2007 Feb; 46(8):2079-90. PubMed ID: 17263560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae.
    Punitha T; Phang SM; Juan JC; Beardall J
    Mar Biotechnol (NY); 2018 Jun; 20(3):282-303. PubMed ID: 29691674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct isoforms of phospholipase A2 mediate the ability of Salmonella enterica serotype typhimurium and Shigella flexneri to induce the transepithelial migration of neutrophils.
    Mumy KL; Bien JD; Pazos MA; Gronert K; Hurley BP; McCormick BA
    Infect Immun; 2008 Aug; 76(8):3614-27. PubMed ID: 18505810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum.
    Wischang D; Radlow M; Schulz H; Vilter H; Viehweger L; Altmeyer MO; Kegler C; Herrmann J; Müller R; Gaillard F; Delage L; Leblanc C; Hartung J
    Bioorg Chem; 2012 Oct; 44():25-34. PubMed ID: 22884431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.