These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11985594)

  • 61. Vanadium as a factor that disturbs phosphorus metabolism in nervous tissue.
    Parsadanian HK; Marchenko SN; Parsadanian KH; Barilyak IR
    Neurotoxicology; 1998; 19(4-5):561-4. PubMed ID: 9745912
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities.
    Colin C; Leblanc C; Wagner E; Delage L; Leize-Wagner E; Van Dorsselaer A; Kloareg B; Potin P
    J Biol Chem; 2003 Jun; 278(26):23545-52. PubMed ID: 12697758
    [TBL] [Abstract][Full Text] [Related]  

  • 63. X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis.
    Messerschmidt A; Wever R
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):392-6. PubMed ID: 8552646
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases.
    Crans DC
    J Org Chem; 2015 Dec; 80(24):11899-915. PubMed ID: 26544762
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Aptamer-Based Pathogen Monitoring for
    Shin WR; Sekhon SS; Kim SG; Rhee SJ; Yang GN; Won K; Rhee SK; Ryu H; Kim K; Min J; Ahn JY; Kim YH
    J Biomed Nanotechnol; 2018 Nov; 14(11):1992-2002. PubMed ID: 30165934
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases.
    Colin C; Leblanc C; Michel G; Wagner E; Leize-Wagner E; Van Dorsselaer A; Potin P
    J Biol Inorg Chem; 2005 Mar; 10(2):156-66. PubMed ID: 15747134
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bromoperoxidase activity and vanadium level of the brown alga Ascophyllum nodosum.
    Hartung J; Brücher O; Hach D; Schulz H; Vilter H; Ruick G
    Phytochemistry; 2008 Nov; 69(16):2826-30. PubMed ID: 18945460
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Shigella flexneri phagosomal escape is independent of invasion.
    Paetzold S; Lourido S; Raupach B; Zychlinsky A
    Infect Immun; 2007 Oct; 75(10):4826-30. PubMed ID: 17664266
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Vanadium K-edge absorption spectrum of bromoperoxidase from Ascophyllum nodosum.
    Hormes J; Kuetgens U; Chauvistre R; Schreiber W; Anders N; Vilter H; Rehder D; Weidemann C
    Biochim Biophys Acta; 1988 Oct; 956(3):293-9. PubMed ID: 3167074
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Vanadium haloperoxidases.
    Butler A
    Curr Opin Chem Biol; 1998 Apr; 2(2):279-85. PubMed ID: 9667930
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism.
    Lindqvist Y; Schneider G; Vihko P
    Eur J Biochem; 1994 Apr; 221(1):139-42. PubMed ID: 8168503
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum.
    Arber JM; de Boer E; Garner CD; Hasnain SS; Wever R
    Biochemistry; 1989 Sep; 28(19):7968-73. PubMed ID: 2611224
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase from Macrocystis pyrifera and Fucus distichus: steady state kinetic analysis and comparison to the mechanism of V-BrPO from Ascophyllum nodosum.
    Soedjak HS; Butler A
    Biochim Biophys Acta; 1991 Aug; 1079(1):1-7. PubMed ID: 1888757
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Researches on antibiotic-resistance in "Shigella sonnei" and "flexneri" and in "Salmonella typhimurium" (author's transl)].
    Rizzo G; Stano G
    Ann Sclavo; 1976; 18(6):825-30. PubMed ID: 800942
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [A comparative analysis of beta-lactamase activity in enterobacteria].
    Demikhovskaia AA; Lukach IG; Zaritskiĭ AM; Kotov AI
    Mikrobiol Zh (1978); 1984; 46(2):36-9. PubMed ID: 6401094
    [No Abstract]   [Full Text] [Related]  

  • 76. Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen.
    Lucchini S; Liu H; Jin Q; Hinton JC; Yu J
    Infect Immun; 2005 Jan; 73(1):88-102. PubMed ID: 15618144
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biocatalytic and biomimetic oxidations with vanadium.
    van de Velde F; Arends IW; Sheldon RA
    J Inorg Biochem; 2000 May; 80(1-2):81-9. PubMed ID: 10885467
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct detection of Shigella flexneri and Salmonella typhimurium in human feces by real-time PCR.
    Yang YG; Song MK; Park SJ; Kim SW
    J Microbiol Biotechnol; 2007 Oct; 17(10):1616-21. PubMed ID: 18156776
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment.
    Wever R; van der Horst MA
    Dalton Trans; 2013 Sep; 42(33):11778-86. PubMed ID: 23657250
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes.
    McLauchlan CC; Murakami HA; Wallace CA; Crans DC
    J Inorg Biochem; 2018 Sep; 186():267-279. PubMed ID: 29990751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.