BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11985850)

  • 1. Antiplasmodial activity of naphthoquinones and one anthraquinone from Stereospermum kunthianum.
    Onegi B; Kraft C; Köhler I; Freund M; Jenett-Siems K; Siems K; Beyer G; Melzig MF; Bienzle U; Eich E
    Phytochemistry; 2002 May; 60(1):39-44. PubMed ID: 11985850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antileishmanial, antiplasmodial and cytotoxic activities of 12,16-dideoxy aegyptinone B from Zhumeria majdae Rech.f. & Wendelbo.
    Moein MR; Pawar RS; Khan SI; Tekwani BL; Khan IA
    Phytother Res; 2008 Mar; 22(3):283-5. PubMed ID: 17886231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-radical-scavenging and xanthine oxidase inhibitory constituents from Stereospermum personatum.
    Kumar US; Tiwari AK; Reddy SV; Aparna P; Rao RJ; Ali AZ; Rao JM
    J Nat Prod; 2005 Nov; 68(11):1615-21. PubMed ID: 16309309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic synthesis of antimalarial naphthoquinones.
    Malerich JP; Maimone TJ; Elliott GI; Trauner D
    J Am Chem Soc; 2005 May; 127(17):6276-83. PubMed ID: 15853334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Antiplasmodial Diterpenes from Gutierrezia sarothrae.
    Su Q; Dalal S; Goetz M; Cassera MB; Kingston DG
    Nat Prod Commun; 2016 Jun; 11(6):719-21. PubMed ID: 27534100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new diterpene from Tanaecium jaroba.
    Mitaine-Offer AC; Sauvain M; Deharo E; Muñoz V; Zèches-Hanrot M
    Planta Med; 2002 Jun; 68(6):568-9. PubMed ID: 12094310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochenols A and B, two quinones from Stereospermum chelonoides.
    Haque MR; Rahman KM; Iskander MN; Hasan CM; Rashid MA
    Phytochemistry; 2006 Dec; 67(24):2663-5. PubMed ID: 17027879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newbouldiaquinone A: A naphthoquinone-anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from Newbouldia laevis.
    Eyong KO; Folefoc GN; Kuete V; Beng VP; Krohn K; Hussain H; Nkengfack AE; Saeftel M; Sarite SR; Hoerauf A
    Phytochemistry; 2006 Mar; 67(6):605-9. PubMed ID: 16442576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial and antioxidant activities and phytochemical composition of
    Wangso H; Laya A; Leutcha PB; Koubala BB; Laurent S; Henoumont C; Talla E
    Nat Prod Res; 2022 Nov; 36(22):5665-5675. PubMed ID: 34933618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiprotozoal activity of Khaya anthotheca, (Welv.) C.D.C. a plant used by chimpanzees for self-medication.
    Obbo CJ; Makanga B; Mulholland DA; Coombes PH; Brun R
    J Ethnopharmacol; 2013 May; 147(1):220-3. PubMed ID: 23501156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiprotozoal and cytotoxic naphthalene derivatives from Diospyros assimilis.
    Ganapaty S; Steve Thomas P; Karagianis G; Waterman PG; Brun R
    Phytochemistry; 2006 Sep; 67(17):1950-6. PubMed ID: 16890968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiprotozoal activity of drimane and coloratane sesquiterpenes towards Trypanosoma brucei rhodesiense and Plasmodium falciparum in vitro.
    Wube AA; Bucar F; Gibbons S; Asres K; Rattray L; Croft SL
    Phytother Res; 2010 Oct; 24(10):1468-72. PubMed ID: 20878696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiprotozoal activities of some constituents of Markhamia tomentosa (Bignoniaceae).
    Tantangmo F; Lenta BN; Boyom FF; Ngouela S; Kaiser M; Tsamo E; Weniger B; Rosenthal PJ; Vonthron-Sénécheau C
    Ann Trop Med Parasitol; 2010 Jul; 104(5):391-8. PubMed ID: 20819307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of major components from the roots of Godmania aesculifolia and determination of their antifungal activities.
    Tamayo-Castillo G; Vásquez V; Ríos MI; Rodríguez MV; Solano G; Zacchino S; Gupta MP
    Planta Med; 2013 Dec; 79(18):1749-55. PubMed ID: 24356871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leishmanicidal activities and cytotoxicities of bisnaphthoquinone analogues and naphthol derivatives from Burman Diospyros burmanica.
    Mori-Yasumoto K; Izumoto R; Fuchino H; Ooi T; Agatsuma Y; Kusumi T; Satake M; Sekita S
    Bioorg Med Chem; 2012 Sep; 20(17):5215-9. PubMed ID: 22858297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naphthoquinones from Catalpa ovata and their inhibitory effects on the production of nitric oxide.
    Park BM; Hong SS; Lee C; Lee MS; Kang SJ; Shin YS; Jung JK; Hong JT; Kim Y; Lee MK; Hwang BY
    Arch Pharm Res; 2010 Mar; 33(3):381-5. PubMed ID: 20361302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro antileishmanial, antiplasmodial and cytotoxic activities of a new ventiloquinone and five known triterpenes from Parinari excelsa.
    Attioua B; Yeo D; Lagnika L; Harisolo R; Antheaume C; Weniger B; Kaiser M; Lobstein A; Vonthron-Sénécheau C
    Pharm Biol; 2012 Jul; 50(7):801-6. PubMed ID: 22472023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abietane diterpenoids from Salvia sahendica--antiprotozoal activity and determination of their absolute configurations.
    Ebrahimi SN; Zimmermann S; Zaugg J; Smiesko M; Brun R; Hamburger M
    Planta Med; 2013 Jan; 79(2):150-6. PubMed ID: 23299758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leishmanicidal and antiplasmodial activity of constituents of Smirnowia iranica.
    Sairafianpour M; Kayser O; Christensen J; Asfa M; Witt M; Staerk D; Jaroszewski JW
    J Nat Prod; 2002 Dec; 65(12):1754-8. PubMed ID: 12502308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiplasmodial metabolites isolated from the marine octocoral Muricea austera.
    Gutiérrez M; Capson TL; Guzman HM; Gonzalez J; Ortega-Barría E; Quiñoa E; Riguera R
    J Nat Prod; 2006 Oct; 69(10):1379-83. PubMed ID: 17067146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.