These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 11986372)
1. Inward rectifier K(+) current under physiological cytoplasmic conditions in guinea-pig cardiac ventricular cells. Ishihara K; Yan DH; Yamamoto S; Ehara T J Physiol; 2002 May; 540(Pt 3):831-41. PubMed ID: 11986372 [TBL] [Abstract][Full Text] [Related]
2. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. Ishihara K; Ehara T J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):755-71. PubMed ID: 9660891 [TBL] [Abstract][Full Text] [Related]
3. Different intracellular polyamine concentrations underlie the difference in the inward rectifier K(+) currents in atria and ventricles of the guinea-pig heart. Yan DH; Nishimura K; Yoshida K; Nakahira K; Ehara T; Igarashi K; Ishihara K J Physiol; 2005 Mar; 563(Pt 3):713-24. PubMed ID: 15668212 [TBL] [Abstract][Full Text] [Related]
4. Time-dependent outward currents through the inward rectifier potassium channel IRK1. The role of weak blocking molecules. Ishihara K J Gen Physiol; 1997 Feb; 109(2):229-43. PubMed ID: 9041451 [TBL] [Abstract][Full Text] [Related]
5. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel. Yan DH; Ishihara K J Physiol; 2005 Mar; 563(Pt 3):725-44. PubMed ID: 15618275 [TBL] [Abstract][Full Text] [Related]
6. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Dhamoon AS; Pandit SV; Sarmast F; Parisian KR; Guha P; Li Y; Bagwe S; Taffet SM; Anumonwo JM Circ Res; 2004 May; 94(10):1332-9. PubMed ID: 15087421 [TBL] [Abstract][Full Text] [Related]
7. Identification of the major membrane currents in freshly dispersed single smooth muscle cells of guinea-pig ureter. Lang RJ J Physiol; 1989 May; 412():375-95. PubMed ID: 2600837 [TBL] [Abstract][Full Text] [Related]
8. Ionic mechanisms mediating the differential effects of methohexital and thiopental on action potential duration in guinea pig and rabbit isolated ventricular myocytes. Martynyuk AE; Morey TE; Raatikainen MJ; Seubert CN; Dennis DM Anesthesiology; 1999 Jan; 90(1):156-64. PubMed ID: 9915324 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells. Chen Y; Sun XD; Herness S J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655 [TBL] [Abstract][Full Text] [Related]
10. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line. Ishihara K; Ehara T J Physiol; 2004 Apr; 556(Pt 1):61-78. PubMed ID: 14724206 [TBL] [Abstract][Full Text] [Related]
12. Contribution of I Kr and I K1 to ventricular repolarization in canine and human myocytes: is there any influence of action potential duration? Jost N; Acsai K; Horváth B; Bányász T; Baczkó I; Bitay M; Bogáts G; Nánási PP Basic Res Cardiol; 2009 Jan; 104(1):33-41. PubMed ID: 18604626 [TBL] [Abstract][Full Text] [Related]
13. Electrophysiologic mechanism underlying action potential prolongation by sevoflurane in rat ventricular myocytes. Chae JE; Ahn DS; Kim MH; Lynch C; Park WK Anesthesiology; 2007 Jul; 107(1):67-74. PubMed ID: 17585217 [TBL] [Abstract][Full Text] [Related]
14. Action potential clamp fingerprints of K+ currents in canine cardiomyocytes: their role in ventricular repolarization. Bányász T; Magyar J; Szentandrássy N; Horváth B; Birinyi P; Szentmiklósi J; Nánási PP Acta Physiol (Oxf); 2007 Jul; 190(3):189-98. PubMed ID: 17394574 [TBL] [Abstract][Full Text] [Related]
15. The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. Ishihara K; Mitsuiye T; Noma A; Takano M J Physiol; 1989 Dec; 419():297-320. PubMed ID: 2621633 [TBL] [Abstract][Full Text] [Related]
16. Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Varró A; Lathrop DA; Hester SB; Nánási PP; Papp JG Basic Res Cardiol; 1993; 88(2):93-102. PubMed ID: 8389123 [TBL] [Abstract][Full Text] [Related]
17. Effects of Xinjining extract on inward rectifier potassium current in ventricular myocytes of guinea pig. Zhu MJ; Wang GJ; Wang YX; Pu JL; Liu HJ; Yu HB Chin J Integr Med; 2010 Feb; 16(1):61-5. PubMed ID: 20131038 [TBL] [Abstract][Full Text] [Related]
18. Transient outward current carried by inwardly rectifying K+ channels in guinea pig ventricular myocytes dialyzed with low-K+ solution. Zhabyeyev P; Asai T; Missan S; McDonald TF Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1396-403. PubMed ID: 15475519 [TBL] [Abstract][Full Text] [Related]
19. Rapidly and slowly activating components of delayed rectifier K(+) current in guinea-pig sino-atrial node pacemaker cells. Matsuura H; Ehara T; Ding WG; Omatsu-Kanbe M; Isono T J Physiol; 2002 May; 540(Pt 3):815-30. PubMed ID: 11986371 [TBL] [Abstract][Full Text] [Related]
20. Characterization and functional consequences of delayed rectifier current transient in ventricular repolarization. Gintant GA Am J Physiol Heart Circ Physiol; 2000 Mar; 278(3):H806-17. PubMed ID: 10710349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]