These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 11986390)
21. The rubro-bulbospinal path. A descending system known to influence dynamic fusimotor neurones and its interaction with distal cutaneous afferents in the control of flexor reflex afferent pathways. Jeneskog T; Johansson H Exp Brain Res; 1977 Feb; 27(2):161-79. PubMed ID: 838008 [TBL] [Abstract][Full Text] [Related]
22. Functional organization of the spinal reflex pathways from forelimb afferents to hindlimb motoneurones in the cat. Schomburg ED; Meinck HM; Haustein J; Roesler J Brain Res; 1978 Jan; 139(1):21-33. PubMed ID: 202374 [No Abstract] [Full Text] [Related]
23. Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion. Pardoe J; Edgley SA; Drew T; Apps R J Neurosci; 2004 Mar; 24(11):2656-66. PubMed ID: 15028758 [TBL] [Abstract][Full Text] [Related]
24. Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin. Jörntell H; Ekerot CF J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):551-66. PubMed ID: 9852335 [TBL] [Abstract][Full Text] [Related]
25. Actions on gamma-motoneurones elicited by electrical stimulation of group III muscle afferent fibres in the hind limb of the cat. Appelberg B; Hulliger M; Johansson H; Sojka P J Physiol; 1983 Feb; 335():275-92. PubMed ID: 6875878 [TBL] [Abstract][Full Text] [Related]
26. Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Ekerot CF; Larson B Exp Brain Res; 1980 Jan; 38(2):163-72. PubMed ID: 7358102 [TBL] [Abstract][Full Text] [Related]
27. Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. Wall PD; Woolf CJ J Physiol; 1984 Nov; 356():443-58. PubMed ID: 6520794 [TBL] [Abstract][Full Text] [Related]
28. Organization of climbing fiber input from mechanoreceptors to lobule V vermal cortex of the cat. Robertson LT; Laxer KD; Rushmer DS Exp Brain Res; 1982; 46(2):281-91. PubMed ID: 7095036 [TBL] [Abstract][Full Text] [Related]
29. The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Ekerot CF; Larson B Exp Brain Res; 1979 Jul; 36(2):201-17. PubMed ID: 488196 [No Abstract] [Full Text] [Related]
30. Effects of hindlimb cutaneous afferent inputs on spinal reflex recording from tail muscle motoneurons in the spinalized cat. Wada N; Takahashi K; Sugita S; Hirao A; Tokuriki M J Vet Med Sci; 1995 Jun; 57(3):571-2. PubMed ID: 7548425 [TBL] [Abstract][Full Text] [Related]
31. Functional organization of the nociceptive withdrawal reflexes. II. Changes of excitability and receptive fields after spinalization in the rat. Schouenborg J; Holmberg H; Weng HR Exp Brain Res; 1992; 90(3):469-78. PubMed ID: 1426107 [TBL] [Abstract][Full Text] [Related]
32. Termination and functional organization of the dorsolateral spino-olivocerebellar path. Larson B; Miller S; Oscarsson O J Physiol; 1969 Aug; 203(3):611-40. PubMed ID: 5272211 [TBL] [Abstract][Full Text] [Related]
33. Climbing fibres projecting to cat cerebellar anterior lobe activated by cutaneous A and C fibres. Ekerot CF; Gustavsson P; Oscarsson O; Schouenborg J J Physiol; 1987 May; 386():529-38. PubMed ID: 3681718 [TBL] [Abstract][Full Text] [Related]
34. Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum. Tong G; Robertson LT; Brons J Brain Res; 1993 Jan; 601(1-2):65-75. PubMed ID: 8431787 [TBL] [Abstract][Full Text] [Related]
35. Activation of cerebellar climbing fibres to rat cerebellar posterior lobe from motor cortical output pathways. Baker MR; Javid M; Edgley SA J Physiol; 2001 Nov; 536(Pt 3):825-39. PubMed ID: 11691875 [TBL] [Abstract][Full Text] [Related]
36. Common interneurones in reflex pathways from group 1a and 1b afferents of ankle extensors in the cat. Jankowska E; Johannisson T; Lipski J J Physiol; 1981 Jan; 310():381-402. PubMed ID: 7230041 [TBL] [Abstract][Full Text] [Related]
37. The ventral spino-olivocerebellar system in the cat. V. Supraspinal control of spinal transmission. Sjölund B Exp Brain Res; 1978 Nov; 33(3-4):509-22. PubMed ID: 215435 [TBL] [Abstract][Full Text] [Related]
38. Cutaneous inhibitory receptive fields of withdrawal reflexes in the decerebrate spinal rat. Weng HR; Schouenborg J J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):253-65. PubMed ID: 8735710 [TBL] [Abstract][Full Text] [Related]
39. Responses of spinal cord neurones to stimulation of articular afferent fibres in the cat. Schaible HG; Schmidt RF; Willis WD J Physiol; 1986 Mar; 372():575-93. PubMed ID: 3723420 [TBL] [Abstract][Full Text] [Related]
40. Rostrocaudal branching within the climbing fibre projection to forelimb-receiving areas of the cerebellar cortical C1 zone. Apps R J Comp Neurol; 2000 Apr; 419(2):193-204. PubMed ID: 10722998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]