BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 11986919)

  • 1. Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp.
    Gill PK; Arora DS; Chander M
    J Ind Microbiol Biotechnol; 2002 Apr; 28(4):201-3. PubMed ID: 11986919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolourisation of diverse industrial dyes by some Phlebia spp. and their comparison with Phanerochaete chrysosporium.
    Arora DS; Chander M
    J Basic Microbiol; 2004; 44(5):331-8. PubMed ID: 15378532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens.
    Eichlerová I; Homolka L; Nerud F
    Bioresour Technol; 2006 Nov; 97(16):2153-9. PubMed ID: 16257199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain.
    Liu W; Chao Y; Yang X; Bao H; Qian S
    J Ind Microbiol Biotechnol; 2004 Mar; 31(3):127-32. PubMed ID: 15069603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain.
    Ren S; Guo J; Zeng G; Sun G
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1316-21. PubMed ID: 16622679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodecolourisation of some industrial dyes by white-rot fungi.
    Chander M; Arora DS; Bath HK
    J Ind Microbiol Biotechnol; 2004 Feb; 31(2):94-7. PubMed ID: 14758557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of veratryl alcohol and tween 80 on ligninase production and its roles in decolorization of azo dyes by white-rot basidiomycete PM2].
    Jia R; Tang BK; Zhang XB; He YM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):302-5. PubMed ID: 15969128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced decolourization of Direct Red-80 dye by the white rot fungus Phanerochaete chrysosporium employing sequential design of experiments.
    Singh S; Pakshirajan K; Daverey A
    Biodegradation; 2010 Jul; 21(4):501-11. PubMed ID: 19960234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium.
    Yang X; Wang J; Zhao X; Wang Q; Xue R
    Bioresour Technol; 2011 Nov; 102(22):10535-41. PubMed ID: 21920734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodecolourisation of reactive red an industrial dye by Phlebia spp.
    Chander M; Singh D; Kaur R
    J Environ Biol; 2014 Nov; 35(6):1031-6. PubMed ID: 25522502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus.
    Eichlerová I; Homolka L; Lisá L; Nerud F
    Chemosphere; 2005 Jul; 60(3):398-404. PubMed ID: 15924959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of reactive brilliant red K-2BP by white rot fungus under sterile and non-sterile conditions.
    Gao DW; Wen XH; Qian Y
    J Environ Sci (China); 2006; 18(3):428-32. PubMed ID: 17294635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp.
    Selvam K; Swaminathan K; Chae KS
    Bioresour Technol; 2003 Jun; 88(2):115-9. PubMed ID: 12576004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of different white rot fungi to decolourize textile azo dyes in the absence of external carbon source.
    Rani C; Jana AK; Bansal A
    Environ Technol; 2012; 33(7-9):887-96. PubMed ID: 22720413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium.
    Spadaro JT; Gold MH; Renganathan V
    Appl Environ Microbiol; 1992 Aug; 58(8):2397-401. PubMed ID: 1514787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase.
    Casas N; Parella T; Vicent T; Caminal G; Sarrà M
    Chemosphere; 2009 Jun; 75(10):1344-9. PubMed ID: 19298999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium.
    Cripps C; Bumpus JA; Aust SD
    Appl Environ Microbiol; 1990 Apr; 56(4):1114-8. PubMed ID: 2339873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decolorization of synthetic dyes by the deuteromycete Pestalotiopsis guepinii CLPS no. 786 strain.
    Saparrat MC; Hammer E
    J Basic Microbiol; 2006; 46(1):28-33. PubMed ID: 16463315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the "cna" adhesion gene in activated sludge.
    Ayed L; Bakir K; Ben Mansour H; Hammami S; Cheref A; Bakhrouf A
    Microb Pathog; 2017 Feb; 103():29-39. PubMed ID: 27998733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.