These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 11987414)

  • 1. [Mass transfer model of membrane extraction for recovery of cadmium ion and zinc ion].
    Wang Y; Wang Y; Luo G; Liu F; Dai Y
    Huan Jing Ke Xue; 2002 Jan; 23(1):82-6. PubMed ID: 11987414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Recovery of zinc ion and cadmium ion with hollow fiber membrane extraction].
    Wang Y; Luo G; Wang Y; Wu Z; Dai Y
    Huan Jing Ke Xue; 2001 Sep; 22(5):74-8. PubMed ID: 11769234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure and flux profiles in bead-filled ultrafiltration/microfiltration hollow fiber membrane modules.
    Dai XP; Luo RG; Sirkar KK
    Biotechnol Prog; 2000; 16(6):1044-54. PubMed ID: 11101333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of a high-throughput measurement method of octanol/water distribution coefficient based on hollow fiber membrane solvent microextraction technique.
    Bao JJ; Liu X; Zhang Y; Li Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Sep; 967():183-9. PubMed ID: 25125394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous ultrafiltration and affinity sorptive separation of proteins in a hollow fiber membrane module.
    Molinari R; Torres JL; Michaels AS; Kilpatrick PK; Carbonell RG
    Biotechnol Bioeng; 1990 Sep; 36(6):572-80. PubMed ID: 18595115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model.
    Choy KK; McKay G
    Chemosphere; 2005 Aug; 60(8):1141-50. PubMed ID: 15993163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical and experimental study of mass transfer in the artificial kidney.
    Liao Z; Poh CK; Huang Z; Hardy PA; Clark WR; Gao D
    J Biomech Eng; 2003 Aug; 125(4):472-80. PubMed ID: 12968571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Correlation of Overall Mass Transfer Coefficient of Water Transport in a Hollow-Fiber Membrane Module via an Artificial Neural Network Approach.
    Nguyen XL; Trinh NV; Kim Y; Yu S
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioartificial kidney. I. Theoretical analysis of convective flow in hollow fiber modules: application to a bioartificial hemofilter.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):142-52. PubMed ID: 10712730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of metallic effluents using coconut shell coke.
    Feroz S; King P; Prasad VS
    J Environ Sci Eng; 2005 Apr; 47(2):109-14. PubMed ID: 16649613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry.
    Silva EL; Roldan Pdos S; Giné MF
    J Hazard Mater; 2009 Nov; 171(1-3):1133-8. PubMed ID: 19646812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of metal ions from aqueous solution using bone char.
    Choy KK; McKay G
    Environ Int; 2005 Aug; 31(6):845-54. PubMed ID: 16023725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and preconcentration of Cd(II) from environmental samples using polypropylene porous membrane in a hollow fiber renewal liquid membrane extraction procedure and determination by FAAS.
    Luciano RM; Bedendo GC; Carletto JS; Carasek E
    J Hazard Mater; 2010 May; 177(1-3):567-72. PubMed ID: 20056319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium and lead adsorption by a natural polysaccharide in MF membrane reactor: experimental analysis and modelling.
    Reddad Z; Gérente C; Andrès Y; Thibault JF; Le Cloirec P
    Water Res; 2003 Sep; 37(16):3983-91. PubMed ID: 12909117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of filtration characteristics in submerged microfiltration for drinking water treatment.
    Lee S; Park PK; Kim JH; Yeon KM; Lee CH
    Water Res; 2008 Jun; 42(12):3109-21. PubMed ID: 18387649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element model for nutrient distribution analysis of a hollow fiber membrane bioreactor.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):229-38. PubMed ID: 25099327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic permeability of hollow-fiber membranes.
    Stevenson JF; Parry JS; Gupta KM
    J Biomed Mater Res; 1978 May; 12(3):401-19. PubMed ID: 670261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive extraction of penicillin G in hollow-fiber and hollow-fiber fabric modules.
    Yang C; Cussler EL
    Biotechnol Bioeng; 2000 Jul; 69(1):66-73. PubMed ID: 10820332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.