BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 11988572)

  • 21. Hedycarya macrofossils and associated Planarpollenites pollen from the early Miocene of New Zealand.
    Conran JG; Bannister JM; Mildenhall DC; Lee DE
    Am J Bot; 2016 May; 103(5):938-56. PubMed ID: 27208361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.
    Roddy AB; Guilliams CM; Lilittham T; Farmer J; Wormser V; Pham T; Fine PV; Feild TS; Dawson TE
    J Exp Bot; 2013 Oct; 64(13):4081-8. PubMed ID: 23963676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new angiosperm from the Crato Formation (Araripe Basin, Brazil) and comments on the Early Cretaceous monocotyledons.
    De Lima FJ; Saraiva AA; Da Silva MA; Bantim RA; Sayão JM
    An Acad Bras Cienc; 2014 Dec; 86(4):1657-72. PubMed ID: 25590706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The age of the angiosperms: a molecular timescale without a clock.
    Bell CD; Soltis DE; Soltis PS
    Evolution; 2005 Jun; 59(6):1245-58. PubMed ID: 16050101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Floristics and plant biogeography in China.
    Li DZ
    J Integr Plant Biol; 2008 Jul; 50(7):771-7. PubMed ID: 18713387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaf fossils of Luzuriaga and a monocot flower with in situ pollen of Liliacidites contortus Mildenh. & Bannister sp. nov. (Alstroemeriaceae) from the Early Miocene.
    Conran JG; Bannister JM; Mildenhall DC; Lee DE; Chacón J; Renner SS
    Am J Bot; 2014 Jan; 101(1):141-55. PubMed ID: 24425789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In search of the first flower: A jurassic angiosperm, archaefructus, from northeast china.
    Sun G; Dilcher DL; Zheng S; Zhou Z
    Science; 1998 Nov; 282(5394):1692-5. PubMed ID: 9831557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers.
    Bateman RM; Hilton J; Rudall PJ
    J Exp Bot; 2006; 57(13):3471-503. PubMed ID: 17056677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants.
    Kerkhoff AJ; Fagan WF; Elser JJ; Enquist BJ
    Am Nat; 2006 Oct; 168(4):E103-22. PubMed ID: 17004214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.
    Nardmann J; Reisewitz P; Werr W
    Mol Biol Evol; 2009 Aug; 26(8):1745-55. PubMed ID: 19387013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae).
    Sauquet H; Weston PH; Barker NP; Anderson CL; Cantrill DJ; Savolainen V
    Mol Phylogenet Evol; 2009 Apr; 51(1):31-43. PubMed ID: 19135535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte.
    Matsunaga KK; Tomescu AM
    Ann Bot; 2016 Apr; 117(4):585-98. PubMed ID: 26921730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water-deficit stress-induced anatomical changes in higher plants.
    Shao HB; Chu LY; Jaleel CA; Zhao CX
    C R Biol; 2008 Mar; 331(3):215-25. PubMed ID: 18280987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants.
    Reich PB; Tjoelker MG; Pregitzer KS; Wright IJ; Oleksyn J; Machado JL
    Ecol Lett; 2008 Aug; 11(8):793-801. PubMed ID: 18445031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The missing link in Ginkgo evolution.
    Zhou Z; Zheng S
    Nature; 2003 Jun; 423(6942):821-2. PubMed ID: 12815417
    [No Abstract]   [Full Text] [Related]  

  • 36. Paleobotany. Fossil plant hints how first flowers bloomed.
    Stokstad E
    Science; 2002 May; 296(5569):821. PubMed ID: 11988540
    [No Abstract]   [Full Text] [Related]  

  • 37. Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales.
    Friis EM; Crane PR; Pedersen KR; Bengtson S; Donoghue PC; Grimm GW; Stampanoni M
    Nature; 2007 Nov; 450(7169):549-52. PubMed ID: 18033296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets.
    Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE
    Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China.
    Jiang HE; Li X; Zhao YX; Ferguson DK; Hueber F; Bera S; Wang YF; Zhao LC; Liu CJ; Li CS
    J Ethnopharmacol; 2006 Dec; 108(3):414-22. PubMed ID: 16879937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstructing the ancestral angiosperm flower and its initial specializations.
    Endress PK; Doyle JA
    Am J Bot; 2009 Jan; 96(1):22-66. PubMed ID: 21628175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.