These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 11989704)
41. Technical aspects of mechnomyography recording with piezoelectric contact sensor. Watakabe M; Itoh Y; Mita K; Akataki K Med Biol Eng Comput; 1998 Sep; 36(5):557-61. PubMed ID: 10367437 [TBL] [Abstract][Full Text] [Related]
42. Vibration characteristics of an ultrasonic transducer of two piezoelectric discs. Piao C; Kim JO Ultrasonics; 2017 Feb; 74():72-80. PubMed ID: 27743545 [TBL] [Abstract][Full Text] [Related]
43. Electromechanical Characteristics of Radially Layered Piezoceramic/Epoxy Cylindrical Composite Transducers: Theoretical Solution, Numerical Simulation, and Experimental Verification. Wang J; Qin L; Song W; Shi Z; Song G IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1643-1656. PubMed ID: 29994204 [TBL] [Abstract][Full Text] [Related]
44. Finite element modelling of dense and porous piezoceramic disc hydrophones. Ramesh R; Kara H; Bowen CR Ultrasonics; 2005 Jan; 43(3):173-81. PubMed ID: 15556652 [TBL] [Abstract][Full Text] [Related]
45. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating. George J; Ebenezer DD; Bhattacharyya SK J Acoust Soc Am; 2010 Oct; 128(4):1712-20. PubMed ID: 20968344 [TBL] [Abstract][Full Text] [Related]
46. Simulation of piezoelectric excitation of guided waves using waveguide finite elements. Loveday PW IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2038-45. PubMed ID: 18986900 [TBL] [Abstract][Full Text] [Related]
47. Nonlinear constant evaluation in a piezoelectric rod from analysis of second harmonic generation. Parenthoine D; Haumesser L; Vander Meulen F; Lethiecq M; Tran-Huu-Hue LP IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):167-74. PubMed ID: 19213643 [TBL] [Abstract][Full Text] [Related]
48. Limits and Opportunities for Miniaturizing Ultrasonic Surgical Devices Based on a Langevin Transducer. Li X; Stritch T; Manley K; Lucas M IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2543-2553. PubMed ID: 33690118 [TBL] [Abstract][Full Text] [Related]
49. Pulse mode of operation of a spherical piezoceramic transducer filled with liquid and having a correcting electric circuit. Konovalov SI; Kuz'menko AG J Acoust Soc Am; 2010 Dec; 128(6):3489-95. PubMed ID: 21218881 [TBL] [Abstract][Full Text] [Related]
50. Axial vibration characteristics of a cylindrical, radially polarized piezoelectric transducer with different electrode patterns. Sun D; Wang S; Hata S; Shimokohbe A Ultrasonics; 2010 Mar; 50(3):403-10. PubMed ID: 19818980 [TBL] [Abstract][Full Text] [Related]
51. Coupled vibration analysis of the thin-walled cylindrical piezoelectric ceramic transducers. Aronov B J Acoust Soc Am; 2009 Feb; 125(2):803-18. PubMed ID: 19206858 [TBL] [Abstract][Full Text] [Related]
52. Invariants of electromechanical coupling coefficients in piezoceramics. Mezheritsky AV IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Dec; 50(12):1742-51. PubMed ID: 14761045 [TBL] [Abstract][Full Text] [Related]
53. Thermo-mechanical stress effect on 1-3 piezocomposite power transducer performance. Richard C; Lee HS; Guyomar D Ultrasonics; 2004 Apr; 42(1-9):417-24. PubMed ID: 15047322 [TBL] [Abstract][Full Text] [Related]
54. Inherent Loss Analysis of Piezoelectrics in Radial Vibration and its Application in Ultrasonic Motor. Dong X; Jiang C; Jin L; Xu Z; Yuan Y IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1632-1640. PubMed ID: 32149631 [TBL] [Abstract][Full Text] [Related]
55. Compressive stress effect on the loss mechanism in a soft piezoelectric Pb(Zr,Ti)O Daneshpajooh H; Choi M; Park Y; Scholehwar T; Hennig E; Uchino K Rev Sci Instrum; 2019 Jul; 90(7):075001. PubMed ID: 31370461 [TBL] [Abstract][Full Text] [Related]
56. New transmission line analogy applied to single and multilayered piezoelectric transducers. Dion JL IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):577-83. PubMed ID: 18263222 [TBL] [Abstract][Full Text] [Related]
57. Influence of the conductivity of a liquid contacting with a lateral electric field excited resonator based on PZT ceramics on its characteristics. Borodina IA; Zaitsev BD; Teplykh AA Ultrasonics; 2020 Mar; 102():106059. PubMed ID: 31948806 [TBL] [Abstract][Full Text] [Related]
58. Characterization of the mechanical nonlinear behavior of piezoelectric ceramics. Albareda A; Gonnard P; Perrin V; Briot R; Guyomar D IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):844-53. PubMed ID: 18238617 [TBL] [Abstract][Full Text] [Related]
59. Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs. Huang YH; Ma CC IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2598-611. PubMed ID: 20040397 [TBL] [Abstract][Full Text] [Related]
60. Analysis and experimental validation of longitudinally composite ultrasonic transducers. Lin J; Lin S; Xu J J Acoust Soc Am; 2019 Jan; 145(1):263. PubMed ID: 30710942 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]