BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11989715)

  • 1. Probing electrostatic interactions in cytochrome c using site-directed chemical modification.
    Blouin C; Guillemette JG; Wallace CJ
    Biochem Cell Biol; 2002; 80(2):197-203. PubMed ID: 11989715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman study of the interactions between cytochrome c variants and cytochrome c oxidase.
    Hildebrandt P; Vanhecke F; Buse G; Soulimane T; Mauk AG
    Biochemistry; 1993 Oct; 32(40):10912-22. PubMed ID: 8399241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of leucine 85 to the structure and function of Saccharomyces cerevisiae iso-1 cytochrome c.
    Parrish JC; Guillemette JG; Wallace CJ
    Biochem Cell Biol; 2001; 79(4):517-24. PubMed ID: 11527221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox properties of cytochrome c: novel linear response and hybrid continuum-microscopic methodologies.
    Simonson T
    Pac Symp Biocomput; 1997; ():421-31. PubMed ID: 9390311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein matrix and dielectric effect in cytochrome c.
    Blouin C; Wallace CJ
    J Biol Chem; 2001 Aug; 276(31):28814-8. PubMed ID: 11375991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins.
    Churg AK; Warshel A
    Biochemistry; 1986 Apr; 25(7):1675-81. PubMed ID: 3011070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c.
    Berghuis AM; Guillemette JG; McLendon G; Sherman F; Smith M; Brayer GD
    J Mol Biol; 1994 Feb; 236(3):786-99. PubMed ID: 8114094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of the equilibrium unfolding of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochromes c.
    Komar-Panicucci S; Weis D; Bakker G; Qiao T; Sherman F; McLendon G
    Biochemistry; 1994 Aug; 33(34):10556-60. PubMed ID: 8068696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding and oxidation of mutant cytochromes c by cytochrome-c oxidase.
    Michel B; Mauk AG; Bosshard HR
    FEBS Lett; 1989 Jan; 243(2):149-52. PubMed ID: 2537228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into molecular stability and physiological properties of the diheme cytochrome CYC41 from the acidophilic bacterium Acidithiobacillus ferrooxidans.
    Malarte G; Leroy G; Lojou E; Abergel C; Bruschi M; Giudici-Orticoni MT
    Biochemistry; 2005 May; 44(17):6471-81. PubMed ID: 15850381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural and functional role of lysine residues in the binding domain of cytochrome c in the electron transfer to cytochrome c oxidase.
    Döpner S; Hildebrandt P; Rosell FI; Mauk AG; von Walter M; Buse G; Soulimane T
    Eur J Biochem; 1999 Apr; 261(2):379-91. PubMed ID: 10215847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis.
    Wallace CJ; Clark-Lewis I
    J Biol Chem; 1992 Feb; 267(6):3852-61. PubMed ID: 1310985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cleavage of the iron-methionine bond in c-type cytochromes: crystal structure of oxidized and reduced cytochrome c(2) from Rhodopseudomonas palustris and its ammonia complex.
    Geremia S; Garau G; Vaccari L; Sgarra R; Viezzoli MS; Calligaris M; Randaccio L
    Protein Sci; 2002 Jan; 11(1):6-17. PubMed ID: 11742117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redesign of the interior hydrophilic region of mitochondrial cytochrome c by site-directed mutagenesis.
    Davies AM; Guillemette JG; Smith M; Greenwood C; Thurgood AG; Mauk AG; Moore GR
    Biochemistry; 1993 May; 32(20):5431-5. PubMed ID: 8388720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine 64 of cytochrome c553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough.
    Sebban-Kreuzer C; Blackledge M; Dolla A; Marion D; Guerlesquin F
    Biochemistry; 1998 Jun; 37(23):8331-40. PubMed ID: 9622485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5.
    Northrup SH; Thomasson KA; Miller CM; Barker PD; Eltis LD; Guillemette JG; Inglis SC; Mauk AG
    Biochemistry; 1993 Jul; 32(26):6613-23. PubMed ID: 8392365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring denatured state energetics: deviations from random coil behavior and implications for the folding of iso-1-cytochrome c.
    Godbole S; Hammack B; Bowler BE
    J Mol Biol; 2000 Feb; 296(1):217-28. PubMed ID: 10656828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating energy flow in biomolecules: application to tuna cytochrome c.
    Wang Q; Wong CF; Rabitz H
    Biophys J; 1998 Jul; 75(1):60-9. PubMed ID: 9649368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH on protein association: modification of the proton-linkage model and experimental verification of the modified model in the case of cytochrome c and plastocyanin.
    Crnogorac MM; Ullmann GM; Kostić NM
    J Am Chem Soc; 2001 Nov; 123(44):10789-98. PubMed ID: 11686679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.