These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11989882)

  • 1. Use of phosphorus release batch tests for modelling an EBPR pilot plant.
    Tykesson E; Aspegren H; Henze M; Nielsen PH; Jansen Jl
    Water Sci Technol; 2002; 45(6):99-106. PubMed ID: 11989882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The EAWAG Bio-P module for activated sludge model No. 3.
    Siegrist H; Rieger L; Koch G; Kühni M; Gujer W
    Water Sci Technol; 2002; 45(6):61-76. PubMed ID: 11989879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of the Activated Sludge Model no. 3 for German wastewater on six different WWTPs.
    Wichern M; Lübken M; Blömer R; Rosenwinkel KH
    Water Sci Technol; 2003; 47(11):211-8. PubMed ID: 12906292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the predictions of ASM2d through modelling in practice.
    Larrea L; Irizar I; Hidalgo ME
    Water Sci Technol; 2002; 45(6):199-208. PubMed ID: 11989872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new interpretation of ASM2d for modeling of SBR performance for enhanced biological phosphorus removal under different P/HAc ratios.
    Yagci N; Insel G; Tasli R; Artan N; Randall CW; Orhon D
    Biotechnol Bioeng; 2006 Feb; 93(2):258-70. PubMed ID: 16261629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of primary sludge fermentation products on mass balance for biological treatment.
    Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and model assisted investigation of an operational strategy for the BPR under low influent concentrations.
    Krühne U; Henze M; Larose A; Kolte-Olsen A; Bay Jørgensen S
    Water Res; 2003 Apr; 37(8):1953-71. PubMed ID: 12697239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chlorination bulking control on water quality and phosphate release/uptake in an anaerobic-oxic activated sludge system.
    Chang WC; Jou SJ; Chien CC; He JA
    Water Sci Technol; 2004; 50(8):177-83. PubMed ID: 15566201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Activated Sludge Model No. 2 at high phosphorus concentrations.
    Seco A; Ferrer J; Serralta J; Manga J; Muñoz M
    Environ Technol; 2001 May; 22(5):497-507. PubMed ID: 11424726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VFA generation from waste activated sludge: effect of temperature and mixing.
    Yuan Q; Sparling R; Oleszkiewicz JA
    Chemosphere; 2011 Jan; 82(4):603-7. PubMed ID: 21075416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.
    Barañao PA; Hall ER
    Water Sci Technol; 2004; 50(3):1-10. PubMed ID: 15461393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of full-scale wastewater treatment plants with different treatment processes using the Activated Sludge Model no. 3.
    Wichern M; Obenaus F; Wulf P; Rosenwinkel KH
    Water Sci Technol; 2001; 44(1):49-56. PubMed ID: 11496677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling.
    Lesjean B; Gnirss R; Adam C; Kraume M; Luck F
    Water Sci Technol; 2003; 48(1):87-94. PubMed ID: 12926624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lime stabilisation of enhanced biological phosphorus removal sludges on the phosphorus availability to plants.
    Seyhan D; Erdincler A
    Water Sci Technol; 2003; 48(1):155-62. PubMed ID: 12926632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling population dynamics of denitrifying phosphorus accumulating organisms in activated sludge.
    Spagni A; Stante L; Bortone G
    Water Sci Technol; 2002; 46(1-2):323-6. PubMed ID: 12216644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater.
    Bickers PO; Bhamidimarri R; Shepherd J; Russell J
    Water Sci Technol; 2003; 48(8):43-51. PubMed ID: 14682569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elutriated acid fermentation of municipal primary sludge.
    Ahn YH; Speece RE
    Water Res; 2006 Jun; 40(11):2210-20. PubMed ID: 16678879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of denitrifying activity of polyphosphate accumulating organisms in an extended ASM2d model.
    García-Usach F; Ribes J; Ferrer J; Seco A
    Water Res; 2010 Oct; 44(18):5284-97. PubMed ID: 20638698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.