These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 11989892)

  • 1. Oil bio-degradation in permeable pavements by microbial communities.
    Newman AP; Pratt CJ; Coupe SJ; Cresswell N
    Water Sci Technol; 2002; 45(7):51-6. PubMed ID: 11989892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation.
    Gertler C; Gerdts G; Timmis KN; Golyshin PN
    FEMS Microbiol Ecol; 2009 Aug; 69(2):288-300. PubMed ID: 19496821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of geotextiles incorporating slow-release phosphate beads for the maintenance of oil degrading bacteria in permeable pavements.
    Spicer GE; Lynch DE; Coupe SJ
    Water Sci Technol; 2006; 54(6-7):273-80. PubMed ID: 17120659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters.
    Coulon F; McKew BA; Osborn AM; McGenity TJ; Timmis KN
    Environ Microbiol; 2007 Jan; 9(1):177-86. PubMed ID: 17227422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial structure and community of RBC biofilm removing nitrate and phosphorus from domestic wastewater.
    Lee H; Choi E; Yun Z; Park YK
    J Microbiol Biotechnol; 2008 Aug; 18(8):1459-69. PubMed ID: 18756109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term stormwater quantity and quality performance of permeable pavement systems.
    Brattebo BO; Booth DB
    Water Res; 2003 Nov; 37(18):4369-76. PubMed ID: 14511707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcosm experiments of oil degradation by microbial mats. II. The changes in microbial species.
    Llirós M; Gaju N; de Oteyza TG; Grimalt JO; Esteve I; Martínez-Alonso M
    Sci Total Environ; 2008 Apr; 393(1):39-49. PubMed ID: 18237762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite.
    Hubert C; Nemati M; Jenneman G; Voordouw G
    Biotechnol Prog; 2003; 19(2):338-45. PubMed ID: 12675569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation.
    Brakstad OG; Bonaunet K
    Biodegradation; 2006 Feb; 17(1):71-82. PubMed ID: 16453173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial communities and their interactions in biofilm systems: an overview.
    Wuertz S; Okabe S; Hausner M
    Water Sci Technol; 2004; 49(11-12):327-36. PubMed ID: 15303758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria.
    Chaerun SK; Tazaki K; Asada R; Kogure K
    Environ Int; 2004 Sep; 30(7):911-22. PubMed ID: 15196839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.
    Nievas ML; Commendatore MG; Esteves JL; Bucalá V
    J Hazard Mater; 2008 Jun; 154(1-3):96-104. PubMed ID: 17997031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of chlorate or perchlorate contaminated water using permeable barriers containing vegetable oil.
    Hunter WJ
    Curr Microbiol; 2002 Oct; 45(4):287-92. PubMed ID: 12192528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term performance and microbial dynamics of an up-flow fixed bed reactor established for the biodegradation of fluorobenzene.
    Carvalho MF; Ferreira Jorge R; Pacheco CC; De Marco P; Henriques IS; Correia A; Castro PM
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):555-62. PubMed ID: 16240116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new non-aerated illuminated packed-column reactor for the development of sulfide-oxidizing biofilms.
    Ferrera I; Sánchez O; Mas J
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):659-64. PubMed ID: 14997353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective plugging strategy-based microbial-enhanced oil recovery using Bacillus licheniformis TT33.
    Suthar H; Hingurao K; Desai A; Nerurkar A
    J Microbiol Biotechnol; 2009 Oct; 19(10):1230-7. PubMed ID: 19884785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber.
    Sivan A; Szanto M; Pavlov V
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):346-52. PubMed ID: 16534612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community structure and biomass in developing drinking water biofilms.
    Keinänen MM; Martikainen PJ; Kontro MH
    Can J Microbiol; 2004 Mar; 50(3):183-91. PubMed ID: 15105885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and microbial community analysis of chloroanilines-degrading aerobic granules in the sequencing airlift bioreactor.
    Zhu L; Xu X; Luo W; Cao D; Yang Y
    J Appl Microbiol; 2008 Jan; 104(1):152-60. PubMed ID: 17887986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.