These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11990502)

  • 1. Application of chemical selective cleavage methods to analyze post-translational modification in proteins.
    Tsugita A; Miyazaki K; Nabetani T; Nozawa T; Kamo M; Kawakami T
    Proteomics; 2001 Sep; 1(9):1082-91. PubMed ID: 11990502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications.
    Wells L; Vosseller K; Cole RN; Cronshaw JM; Matunis MJ; Hart GW
    Mol Cell Proteomics; 2002 Oct; 1(10):791-804. PubMed ID: 12438562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods in enzymology: O-glycosylation of proteins.
    Peter-Katalinić J
    Methods Enzymol; 2005; 405():139-71. PubMed ID: 16413314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyses of PCSK9 post-translational modifications using time-of-flight mass spectrometry.
    Dewpura T; Mayne J
    Methods Mol Biol; 2011; 768():167-87. PubMed ID: 21805242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput mass spectrometric discovery of protein post-translational modifications.
    Wilkins MR; Gasteiger E; Gooley AA; Herbert BR; Molloy MP; Binz PA; Ou K; Sanchez JC; Bairoch A; Williams KL; Hochstrasser DF
    J Mol Biol; 1999 Jun; 289(3):645-57. PubMed ID: 10356335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications.
    Bonaldi T; Imhof A; Regula JT
    Proteomics; 2004 May; 4(5):1382-96. PubMed ID: 15188406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectrometric peptide analysis of 2DE-separated mouse spinal cord and rat hippocampus proteins suggests an NGxG motif of importance for in vivo deamidation.
    Mikkat S; Kischstein T; Kreutzer M; Glocker MO
    Electrophoresis; 2013 Jun; 34(11):1610-8. PubMed ID: 23512288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol.
    Vosseller K; Hansen KC; Chalkley RJ; Trinidad JC; Wells L; Hart GW; Burlingame AL
    Proteomics; 2005 Feb; 5(2):388-98. PubMed ID: 15648052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific cleavage of amino side chains of serine and threonine in peptides and proteins with S-ethyltrifluorothioacetate vapor.
    Kamo M; Tsugita A
    Eur J Biochem; 1998 Jul; 255(1):162-71. PubMed ID: 9692915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introductory glycosylation analysis using SDS-PAGE and peptide mass fingerprinting.
    Wilson N; Simpson R; Cooper-Liddell C
    Methods Mol Biol; 2009; 534():205-12. PubMed ID: 19277550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of diagonal chromatography for recognizing post-translational modifications.
    Liu P; Feasley CL; Regnier FE
    J Chromatogr A; 2004 Aug; 1047(2):221-7. PubMed ID: 15460252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of NETNES, a novel glycoconjugate in Trypanosoma cruzi epimastigotes.
    Macrae JI; Acosta-Serrano A; Morrice NA; Mehlert A; Ferguson MA
    J Biol Chem; 2005 Apr; 280(13):12201-11. PubMed ID: 15649890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-translational modifications of the basic peroxidase isoenzyme from Zinnia elegans.
    Gabaldón C; Gómez-Ros LV; Núñez-Flores MJ; Esteban-Carrasco A; Barceló AR
    Plant Mol Biol; 2007 Sep; 65(1-2):43-61. PubMed ID: 17588152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping O-glycosylation Sites Using OpeRATOR and LC-MS.
    Nordgren M; Nägeli A; Nyhlén H; Sjögren J
    Methods Mol Biol; 2021; 2271():155-167. PubMed ID: 33908006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity.
    Thomas X; Destoumieux-Garzón D; Peduzzi J; Afonso C; Blond A; Birlirakis N; Goulard C; Dubost L; Thai R; Tabet JC; Rebuffat S
    J Biol Chem; 2004 Jul; 279(27):28233-42. PubMed ID: 15102848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A potential pitfall in 18O-based N-linked glycosylation site mapping.
    Angel PM; Lim JM; Wells L; Bergmann C; Orlando R
    Rapid Commun Mass Spectrom; 2007; 21(5):674-82. PubMed ID: 17279607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequencing of peptides phosphorylated on serines and threonines by post-source decay in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Hoffmann R; Metzger S; Spengler B; Otvos L
    J Mass Spectrom; 1999 Nov; 34(11):1195-204. PubMed ID: 10548813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix-assisted laser desorption/ionization mass spectrometric peptide mapping of the neural cell adhesion protein neurolin purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis or acidic precipitation.
    Kussmann M; Lässing U; Stürmer CA; Przybylski M; Roepstorff P
    J Mass Spectrom; 1997 May; 32(5):483-93. PubMed ID: 9180051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of site-specific N-glycosylation.
    Medzihradszky KF
    Methods Mol Biol; 2008; 446():293-316. PubMed ID: 18373266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asparaginyl endopeptidase mapping of proteins with subsequent matrix-assisted laser desorption/ionization mass spectrometry.
    Kanda F; Yoshida S; Okumura T; Takamatsu T
    Rapid Commun Mass Spectrom; 1995; 9(12):1095-100. PubMed ID: 7579626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.