These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11990590)

  • 1. Ion-channel sensing of ferricyanide anion based on a supported bilayer lipid membrane.
    Han X; Wang E
    Anal Sci; 2001 Oct; 17(10):1171-4. PubMed ID: 11990590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and property of DNA incorporated bilayer lipid membranes.
    Tong Y; Han X; Song Y; Jiang J; Wang E
    Biophys Chem; 2003 Aug; 105(1):1-9. PubMed ID: 12932574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channel behavior of supported bilayer lipid membranes on a glassy carbon electrode.
    Wu Z; Tang J; Cheng Z; Yang X; Wang E
    Anal Chem; 2000 Dec; 72(24):6030-3. PubMed ID: 11140773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion.
    Zhang Z; Shi J; Huang W
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():431-5. PubMed ID: 26117774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip stochastic resonance of ion channel systems with variable internal noise.
    Stava E; Choi S; Kim HS; Blick RH
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):169-75. PubMed ID: 22411054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors.
    Yin P; Burns CJ; Osman PD; Cornell BA
    Biosens Bioelectron; 2003 Apr; 18(4):389-97. PubMed ID: 12604256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods.
    Matsuno Y; Osono C; Hirano A; Sugawara M
    Anal Sci; 2004 Aug; 20(8):1217-21. PubMed ID: 15352514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP; Nablo BJ; Kasianowicz JJ; Gaitan MA; DeVoe DL
    Lab Chip; 2008 Apr; 8(4):602-8. PubMed ID: 18369516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated lipid bilayer and ion channel measurement platform.
    Thapliyal T; Poulos JL; Schmidt JJ
    Biosens Bioelectron; 2011 Jan; 26(5):2651-4. PubMed ID: 20197233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical study of ion channel behavior in incorporated poly L-glutamate bilayer lipid membranes.
    Tong Y; Wu Z; Han X; Wang E
    J Bioenerg Biomembr; 2002 Jun; 34(3):185-91. PubMed ID: 12171068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of PorB class II porin from Neisseria meningitidis using a tethered bilayer lipid membrane.
    Jadhav SR; Zheng Y; Michael Garavito R; Mark Worden R
    Biosens Bioelectron; 2008 Dec; 24(4):837-41. PubMed ID: 18722761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical determination of melamine using oligonucleotides modified gold electrodes.
    Cao Q; Zhao H; Zeng L; Wang J; Wang R; Qiu X; He Y
    Talanta; 2009 Dec; 80(2):484-8. PubMed ID: 19836508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy.
    Huang W; Zhang Z; Han X; Tang J; Wang J; Dong S; Wang E
    Biophys J; 2002 Dec; 83(6):3245-55. PubMed ID: 12496093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T; Rahman MM; Uno H; Tero R; Nonogaki Y
    Nanomedicine; 2005 Dec; 1(4):317-22. PubMed ID: 17292105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated electrodes on a silicon based ion channel measurement platform.
    Wilk SJ; Petrossian L; Goryll M; Thornton TJ; Goodnick SM; Tang JM; Eisenberg RS
    Biosens Bioelectron; 2007 Sep; 23(2):183-90. PubMed ID: 17507211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ε-Poly-L-lysine on a Glucose Sensor Based on Glucose Oxidase and Ferricyanide Ion.
    Uematsu K; Ueno T; Katano H
    Anal Sci; 2018; 34(8):947-951. PubMed ID: 30101890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.