These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11991073)

  • 21. Adsorption mechanism of cadmium on juniper bark and wood.
    Shin EW; Karthikeyan KG; Tshabalala MA
    Bioresour Technol; 2007 Feb; 98(3):588-94. PubMed ID: 16574407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption of zinc from aqueous solution using Azadirachta indica bark: equilibrium and kinetic studies.
    King P; Anuradha K; Lahari SB; Prasanna Kumar Y; Prasad VS
    J Hazard Mater; 2008 Mar; 152(1):324-9. PubMed ID: 17681426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake).
    Katircioğlu H; Aslim B; Rehber Türker A; Atici T; Beyatli Y
    Bioresour Technol; 2008 Jul; 99(10):4185-91. PubMed ID: 17964143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorption of pentachlorophenol on pine bark.
    Brás I; Lemos L; Alves A; Pereira MF
    Chemosphere; 2005 Aug; 60(8):1095-102. PubMed ID: 15993157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Longan shell as novel biomacromolecular sorbent for highly selective removal of lead and mercury ions.
    Huang MR; Li S; Li XG
    J Phys Chem B; 2010 Mar; 114(10):3534-42. PubMed ID: 20175512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic, isotherm and thermodynamic studies with linear and non-linear fitting for cadmium(II) removal by black carbon of pine cone.
    Yavari Z; Noroozifar M
    Water Sci Technol; 2017 Oct; 76(7-8):2242-2253. PubMed ID: 29068354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (Ulva lactuca) biomass.
    Asnaoui H; Laaziri A; Khalis M
    Water Sci Technol; 2015; 72(9):1505-15. PubMed ID: 26524441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dynamic study of the sorption and the transport processes of cadmium in calcareous sandy soils.
    Martin-Garin A; Gaudet JP; Charlet L; Vitart X
    Waste Manag; 2002; 22(2):201-7. PubMed ID: 12003149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single and binary sorption of Cr(III) and Ni(II) onto modified pine bark.
    Arim AL; Guzzo G; Quina MJ; Gando-Ferreira LM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28039-28049. PubMed ID: 30066077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption of thallium(I) ions by peat.
    Robalds A; Klavins M; Dreijalte L
    Water Sci Technol; 2013; 68(10):2208-13. PubMed ID: 24292469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP).
    Ahmad R
    J Hazard Mater; 2009 Nov; 171(1-3):767-73. PubMed ID: 19604639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde Schiff's base.
    Monier M
    Int J Biol Macromol; 2012 Apr; 50(3):773-81. PubMed ID: 22155403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark.
    Khokhotva O; Waara S
    J Hazard Mater; 2010 Jan; 173(1-3):689-96. PubMed ID: 19836133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate.
    Lopes CB; Otero M; Lin Z; Silva CM; Pereira E; Rocha J; Duarte AC
    J Hazard Mater; 2010 Mar; 175(1-3):439-44. PubMed ID: 19896771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste.
    Zheng W; Li XM; Wang F; Yang Q; Deng P; Zeng GM
    J Hazard Mater; 2008 Sep; 157(2-3):490-5. PubMed ID: 18313210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury(II).
    Rubinos DA; Barral MT
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17550-68. PubMed ID: 26141977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies.
    Benguella B; Benaissa H
    Water Res; 2002 May; 36(10):2463-74. PubMed ID: 12153012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.
    Nehrenheim E; Gustafsson JP
    Bioresour Technol; 2008 Apr; 99(6):1571-7. PubMed ID: 17532623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria.
    Safa M; Larouci M; Meddah B; Valemens P
    Water Sci Technol; 2012; 65(10):1729-37. PubMed ID: 22546785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.