BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11991201)

  • 41. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nicotinamide in type 1 diabetes. Mechanism of action revisited.
    Kolb H; Burkart V
    Diabetes Care; 1999 Mar; 22 Suppl 2():B16-20. PubMed ID: 10097894
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion.
    Radons J; Heller B; Bürkle A; Hartmann B; Rodriguez ML; Kröncke KD; Burkart V; Kolb H
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1270-7. PubMed ID: 8147870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of poly(ADP-ribose) polymerase and distribution of poly(ADP-ribosyl)ation in glioblastoma and in a glioma multicellular tumour spheroid model.
    Wharton SB; McNelis U; Bell HS; Whittle IR
    Neuropathol Appl Neurobiol; 2000 Dec; 26(6):528-35. PubMed ID: 11123719
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection.
    Skaper SD
    Ann N Y Acad Sci; 2003 May; 993():217-28; discussion 287-8. PubMed ID: 12853316
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction.
    Partida-Sanchez S; Gasser A; Fliegert R; Siebrands CC; Dammermann W; Shi G; Mousseau BJ; Sumoza-Toledo A; Bhagat H; Walseth TF; Guse AH; Lund FE
    J Immunol; 2007 Dec; 179(11):7827-39. PubMed ID: 18025229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies.
    Virág L
    Curr Vasc Pharmacol; 2005 Jul; 3(3):209-14. PubMed ID: 16026317
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of poly(ADP-ribose) synthetase in the development of insulin-dependent diabetes and islet B-cell regeneration.
    Okamoto H
    Biomed Biochim Acta; 1985; 44(1):15-20. PubMed ID: 2986610
    [No Abstract]   [Full Text] [Related]  

  • 49. Streptozotocin-induced beta-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells.
    Gao Y; Parker GJ; Hart GW
    Arch Biochem Biophys; 2000 Nov; 383(2):296-302. PubMed ID: 11185566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nicorandil improves diabetes and rat islet beta-cell damage induced by streptozotocin in vivo and in vitro.
    Kasono K; Yasu T; Kakehashi A; Kinoshita N; Tamemoto H; Namai K; Ohno R; Ueba H; Kuroki M; Ishikawa S; Kawakami M
    Eur J Endocrinol; 2004 Aug; 151(2):277-85. PubMed ID: 15296485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of simulated microgravity conditions on poly(ADP-ribose) polymerase activity in primary cultures of adult rat hepatocytes.
    Cesarone CF; Pippia P; Demori I; Scarabelli L; Fugassa E
    J Gravit Physiol; 2001 Jul; 8(1):P127-8. PubMed ID: 12650200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells.
    Okuda A; Kurokawa S; Takehashi M; Maeda A; Fukuda K; Kubo Y; Nogusa H; Takatani-Nakase T; Okuda S; Ueda K; Tanaka S
    BMC Neurosci; 2017 Jan; 18(1):14. PubMed ID: 28095779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces oxidative stress, DNA strand breaks, and poly(ADP-ribose) polymerase-1 activation in human breast carcinoma cell lines.
    Lin PH; Lin CH; Huang CC; Chuang MC; Lin P
    Toxicol Lett; 2007 Aug; 172(3):146-58. PubMed ID: 17669606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-term effects of nicotinamide-induced inhibition of poly(adenosine diphosphate-ribose) polymerase activity in rat pancreatic islets exposed to interleukin-1 beta.
    Reddy S; Salari-Lak N; Sandler S
    Endocrinology; 1995 May; 136(5):1907-12. PubMed ID: 7720637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The CD38-cyclic ADP-ribose signalling system in insulin secretion: molecular basis and clinical implications.
    Okamoto H; Takasawa S; Nata K
    Diabetologia; 1997 Dec; 40(12):1485-91. PubMed ID: 9447959
    [No Abstract]   [Full Text] [Related]  

  • 56. Insulin receptor signaling for the proliferation of pancreatic β-cells: involvement of Ca2+ second messengers, IP3, NAADP and cADPR.
    Shawl AI; Park KH; Kim UH
    Islets; 2009; 1(3):216-23. PubMed ID: 21099275
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New aspects to the functioning and regeneration of pancreatic beta-cells. Cyclic ADP-ribose and Reg gene.
    Okamoto H
    Adv Exp Med Biol; 1997; 426():301-11. PubMed ID: 9544287
    [No Abstract]   [Full Text] [Related]  

  • 58. The role of poly(ADP-ribose) polymerase-1 in CNS disease.
    Kauppinen TM; Swanson RA
    Neuroscience; 2007 Apr; 145(4):1267-72. PubMed ID: 17084037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. K(ATP) channel openers protect rat islets against the toxic effect of streptozotocin.
    Kullin M; Li Z; Hansen JB; Björk E; Sandler S; Karlsson FA
    Diabetes; 2000 Jul; 49(7):1131-6. PubMed ID: 10909969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel ryanodine receptor expressed in pancreatic islets by alternative splicing from type 2 ryanodine receptor gene.
    Takasawa S; Kuroki M; Nata K; Noguchi N; Ikeda T; Yamauchi A; Ota H; Itaya-Hironaka A; Sakuramoto-Tsuchida S; Takahashi I; Yoshikawa T; Shimosegawa T; Okamoto H
    Biochem Biophys Res Commun; 2010 Jun; 397(2):140-5. PubMed ID: 20471962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.