These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 11991759)
1. The role of PKA, CaMKII, and PKC in avoidance conditioning: permissive or instructive? Shobe J Neurobiol Learn Mem; 2002 May; 77(3):291-312. PubMed ID: 11991759 [TBL] [Abstract][Full Text] [Related]
2. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. Yang HW; Hu XD; Zhang HM; Xin WJ; Li MT; Zhang T; Zhou LJ; Liu XG J Neurophysiol; 2004 Mar; 91(3):1122-33. PubMed ID: 14586032 [TBL] [Abstract][Full Text] [Related]
3. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
4. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554 [TBL] [Abstract][Full Text] [Related]
5. Serotonin 5-HT receptor blockade enhances Ca(2+)/calmodulin-dependent protein kinase II function and membrane expression of AMPA receptor subunits in the rat hippocampus: implications for memory formation. Schiapparelli L; Del Río J; Frechilla D J Neurochem; 2005 Aug; 94(4):884-95. PubMed ID: 16092936 [TBL] [Abstract][Full Text] [Related]
6. Long-term potentiation is mediated by multiple kinase cascades involving CaMKII or either PKA or p42/44 MAPK in the adult rat dentate gyrus in vitro. Wu J; Rowan MJ; Anwyl R J Neurophysiol; 2006 Jun; 95(6):3519-27. PubMed ID: 16709720 [TBL] [Abstract][Full Text] [Related]
7. [Regulation of synaptic efficacy by neural activity in the hippocampus]. Fukunaga K; Miyamoto E Tanpakushitsu Kakusan Koso; 2000 Feb; 45(3 Suppl):474-82. PubMed ID: 10707659 [No Abstract] [Full Text] [Related]
8. The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Szapiro G; Vianna MR; McGaugh JL; Medina JH; Izquierdo I Hippocampus; 2003; 13(1):53-8. PubMed ID: 12625457 [TBL] [Abstract][Full Text] [Related]
9. Changes in Ca(2+)/calmodulin-dependent protein kinase II activity and its relation to performance in passive avoidance response and long-term potentiation formation in mice prenatally exposed to diethylstilbestrol. Kaitsuka T; Fukunaga K; Soeda F; Shirasaki T; Miyamoto E; Takahama K Neuroscience; 2007 Feb; 144(4):1415-24. PubMed ID: 17184923 [TBL] [Abstract][Full Text] [Related]
10. Role of the calcium/calmodulin-dependent protein kinase ii (CaMKII) in the morphine-induced pharmacological effects in the mouse. Narita M; Matsumura Y; Ozaki S; Ise Y; Yajima Y; Suzuki T Neuroscience; 2004; 126(2):415-21. PubMed ID: 15207359 [TBL] [Abstract][Full Text] [Related]
11. [Effects of paroxetine on protein kinase PKA, PKC and CaMKII activity in different brain regions in a rat depression model]. Zheng H; Ma GY; Fu XC; DU HG Nan Fang Yi Ke Da Xue Xue Bao; 2008 Jul; 28(7):1223-5. PubMed ID: 18676269 [TBL] [Abstract][Full Text] [Related]
12. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Wang W; Zhu W; Wang S; Yang D; Crow MT; Xiao RP; Cheng H Circ Res; 2004 Oct; 95(8):798-806. PubMed ID: 15375008 [TBL] [Abstract][Full Text] [Related]
14. Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Li J; Marionneau C; Zhang R; Shah V; Hell JW; Nerbonne JM; Anderson ME Circ Res; 2006 Nov; 99(10):1092-9. PubMed ID: 17038644 [TBL] [Abstract][Full Text] [Related]
15. Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs. Madgwick S; Levasseur M; Jones KT J Cell Sci; 2005 Sep; 118(Pt 17):3849-59. PubMed ID: 16091425 [TBL] [Abstract][Full Text] [Related]
16. Protein kinase A and calcium/calmodulin-dependent protein kinase II regulate D-[3H]aspartate release in auditory brain stem nuclei. Zhang J; Suneja SK; Potashner SJ J Neurosci Res; 2003 Oct; 74(1):81-90. PubMed ID: 13130509 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological discrimination of protein kinase associated exocytosis mechanisms between dopamine and 3,4-dihydroxyphenylalanine in rat striatum using in vivo microdialysis. Zhu G; Okada M; Yoshida S; Hirose S; Kaneko S Neurosci Lett; 2004 Jun; 363(2):120-4. PubMed ID: 15172098 [TBL] [Abstract][Full Text] [Related]
18. Roles of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II in inhibitory avoidance learning in rats. Tan SE Behav Pharmacol; 2007 Feb; 18(1):29-38. PubMed ID: 17218795 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of PKA anchoring to A-kinase anchoring proteins impairs consolidation and facilitates extinction of contextual fear memories. Nijholt IM; Ostroveanu A; Scheper WA; Penke B; Luiten PG; Van der Zee EA; Eisel UL Neurobiol Learn Mem; 2008 Jul; 90(1):223-9. PubMed ID: 18442935 [TBL] [Abstract][Full Text] [Related]
20. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]