These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11991759)

  • 21. Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice.
    Almeida RC; Souza DG; Soletti RC; López MG; Rodrigues AL; Gabilan NH
    Neurosci Lett; 2006 Mar; 395(2):93-7. PubMed ID: 16289784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
    Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM
    Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A developmental switch in the signaling cascades for LTP induction.
    Yasuda H; Barth AL; Stellwagen D; Malenka RC
    Nat Neurosci; 2003 Jan; 6(1):15-6. PubMed ID: 12469130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of hippocampal signaling cascades in consolidation of fear memory.
    Ahi J; Radulovic J; Spiess J
    Behav Brain Res; 2004 Feb; 149(1):17-31. PubMed ID: 14739006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Desensitization and internalization of metabotropic glutamate receptor 1a following activation of heterologous Gq/11-coupled receptors.
    Mundell SJ; Pula G; McIlhinney RA; Roberts PJ; Kelly E
    Biochemistry; 2004 Jun; 43(23):7541-51. PubMed ID: 15182196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes.
    Guo T; Zhang T; Mestril R; Bers DM
    Circ Res; 2006 Aug; 99(4):398-406. PubMed ID: 16840718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro.
    Ahmed T; Frey JU
    Neuropharmacology; 2005 Sep; 49(4):477-92. PubMed ID: 16005911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise.
    Griesbach GS; Gomez-Pinilla F; Hovda DA
    Brain Res; 2004 Aug; 1016(2):154-62. PubMed ID: 15246851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signaling pathways regulating murine cardiac CREB phosphorylation.
    Li B; Kaetzel MA; Dedman JR
    Biochem Biophys Res Commun; 2006 Nov; 350(1):179-84. PubMed ID: 16996475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of CaMKII by alpha4/PP2Ac contributes to learning and memory.
    Yamashita T; Inui S; Maeda K; Hua DR; Takagi K; Fukunaga K; Sakaguchi N
    Brain Res; 2006 Apr; 1082(1):1-10. PubMed ID: 16516168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinase suppressor of Ras1 compartmentalizes hippocampal signal transduction and subserves synaptic plasticity and memory formation.
    Shalin SC; Hernandez CM; Dougherty MK; Morrison DK; Sweatt JD
    Neuron; 2006 Jun; 50(5):765-79. PubMed ID: 16731514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of neurogranin, protein kinase C, and Ca2+/calmodulin dependent protein kinase II in opioid tolerance and dependence.
    Shukla PK; Tang L; Wang ZJ
    Neurosci Lett; 2006 Sep; 404(3):266-9. PubMed ID: 16824682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1.
    Banko JL; Hou L; Klann E
    J Neurochem; 2004 Oct; 91(2):462-70. PubMed ID: 15447679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The role of G-proteins and second messenger systems in the plasticity of the avoidance reflex in the snail].
    Grinkevich LN; Toporkova LB; Lisachev PD; Izvarina NL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(5):886-92. PubMed ID: 9054140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein kinases involved in the expression of long-term potentiation.
    Suzuki T
    Int J Biochem; 1994 Jun; 26(6):735-44. PubMed ID: 8063002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flies put the buzz back into long-term-potentiation.
    Paulsen O; Morris RG
    Nat Neurosci; 2002 Apr; 5(4):289-90. PubMed ID: 11914715
    [No Abstract]   [Full Text] [Related]  

  • 38. Changes in phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in processing of short-term and long-term memories after passive avoidance learning.
    Zhao W; Lawen A; Ng KT
    J Neurosci Res; 1999 Mar; 55(5):557-68. PubMed ID: 10082078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein kinases: which one is the memory molecule?
    Micheau J; Riedel G
    Cell Mol Life Sci; 1999 Apr; 55(4):534-48. PubMed ID: 10357224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein kinase C mediates memory consolidation of taste avoidance conditioning in Lymnaea stagnalis.
    Takigami S; Sunada H; Lukowiak K; Kuzirian AM; Alkon DL; Sakakibara M
    Neurobiol Learn Mem; 2014 May; 111():9-18. PubMed ID: 24613854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.