These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11993860)
1. Episodes of elevated methylmercury concentrations in prairie streams. Balogh SJ; Huang Y; Offerman HJ; Meyer ML; Johnson DK Environ Sci Technol; 2002 Apr; 36(8):1665-70. PubMed ID: 11993860 [TBL] [Abstract][Full Text] [Related]
2. Methylmercury in rivers draining cultivated watersheds. Balogh SJ; Huang Y; Offerman HJ; Meyer ML; Johnson DK Sci Total Environ; 2003 Mar; 304(1-3):305-13. PubMed ID: 12663192 [TBL] [Abstract][Full Text] [Related]
3. Redox chemistry in Minnesota streams during episodes of increased methylmercury discharge. Balogh SJ; Nollet YH; Swain EB Environ Sci Technol; 2004 Oct; 38(19):4921-7. PubMed ID: 15506181 [TBL] [Abstract][Full Text] [Related]
4. Elevated methylmercury concentrations and loadings during flooding in Minnesota rivers. Balogh SJ; Swain EB; Nollet YH Sci Total Environ; 2006 Sep; 368(1):138-48. PubMed ID: 16257039 [TBL] [Abstract][Full Text] [Related]
5. Methylmercury input to the Mississippi River from a large metropolitan wastewater treatment plant. Balogh SJ; Nollet YH Sci Total Environ; 2008 Nov; 406(1-2):145-53. PubMed ID: 18768210 [TBL] [Abstract][Full Text] [Related]
6. A comparison of total mercury and methylmercury export from various Minnesota watersheds. Balogh SJ; Nollet YH; Offerman HJ Sci Total Environ; 2005 Mar; 340(1-3):261-70. PubMed ID: 15752506 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of mercury speciation in Minnesota rivers and streams. Balogh SJ; Swain EB; Nollet YH Environ Pollut; 2008 Jul; 154(1):3-11. PubMed ID: 18262318 [TBL] [Abstract][Full Text] [Related]
8. Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake. Gbondo-Tugbawa SS; McAlear JA; Driscoll CT; Sharpe CW Water Res; 2010 May; 44(9):2863-75. PubMed ID: 20303566 [TBL] [Abstract][Full Text] [Related]
9. [Speciation and spatial-temporal variation of mercury in the Xiaolangdi Reservoir]. Cheng L; Mao YX; Ma BJ; Wang M Huan Jing Ke Xue; 2015 Jan; 36(1):121-9. PubMed ID: 25898655 [TBL] [Abstract][Full Text] [Related]
10. Parsimonious Model for Simulating Total Mercury and Methylmercury in Boreal Streams Based on Riparian Flow Paths and Seasonality. Eklöf K; Kraus A; Futter M; Schelker J; Meili M; Boyer EW; Bishop K Environ Sci Technol; 2015 Jul; 49(13):7851-9. PubMed ID: 25970167 [TBL] [Abstract][Full Text] [Related]
11. Spatial and temporal variation of total mercury and methylmercury in lacustrine wetland in Korea. Kim MK; Lee YM; Zoh KD Environ Sci Pollut Res Int; 2015 May; 22(9):6578-89. PubMed ID: 25758419 [TBL] [Abstract][Full Text] [Related]
12. [Pollution Characteristics Analysis and Risk Assessment of Total Mercury and Methylmercury in Aquatic Products of the Haihe Stem River]. Tong YD; Zhang W; Deng CY; Wang XJ Huan Jing Ke Xue; 2016 Mar; 37(3):942-9. PubMed ID: 27337885 [TBL] [Abstract][Full Text] [Related]
13. The Contribution of Rice Agriculture to Methylmercury in Surface Waters: A Review of Data from the Sacramento Valley, California. Tanner KC; Windham-Myers L; Fleck JA; Tate KW; McCord SA; Linquist BA J Environ Qual; 2017 Jan; 46(1):133-142. PubMed ID: 28177412 [TBL] [Abstract][Full Text] [Related]
14. Mercury in the Mackenzie River delta and estuary: concentrations and fluxes during open-water conditions. Graydon JA; Emmerton CA; Lesack LF; Kelly EN Sci Total Environ; 2009 Apr; 407(8):2980-8. PubMed ID: 19215970 [TBL] [Abstract][Full Text] [Related]
15. Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America. Bates LM; Hall BD Environ Pollut; 2012 Jan; 160(1):153-60. PubMed ID: 22035939 [TBL] [Abstract][Full Text] [Related]
16. Extreme spatial variability and unprecedented methylmercury concentrations within a constructed wetland. Rumbold DG; Fink LE Environ Monit Assess; 2006 Jan; 112(1-3):115-35. PubMed ID: 16404537 [TBL] [Abstract][Full Text] [Related]
17. Evidence for sites of methylmercury formation in a flowing water system: impact of anthropogenic barriers and water management. Pizarro-Barraza C; Gustin MS; Peacock M; Miller M Sci Total Environ; 2014 Apr; 478():58-69. PubMed ID: 24530585 [TBL] [Abstract][Full Text] [Related]
18. Methylmercury Dynamics in Upper Sacramento Valley Rice Fields with Low Background Soil Mercury Levels. Tanner KC; Windham-Myers L; Marvin-DiPasquale M; Fleck JA; Tate KW; Linquist BA J Environ Qual; 2018 Jul; 47(4):830-838. PubMed ID: 30025065 [TBL] [Abstract][Full Text] [Related]
19. Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China. Long SX; Hamilton PB; Yang Y; Wang S; Huang WD; Chen C; Tao R Environ Pollut; 2018 Aug; 239():147-160. PubMed ID: 29653305 [TBL] [Abstract][Full Text] [Related]
20. Methylmercury Bioaccumulation in Stream Food Webs Declines with Increasing Primary Production. Walters DM; Raikow DF; Hammerschmidt CR; Mehling MG; Kovach A; Oris JT Environ Sci Technol; 2015 Jul; 49(13):7762-9. PubMed ID: 26018982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]