BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11993867)

  • 1. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions.
    Benner SG; Hansel CM; Wielinga BW; Barber TM; Fendorf S
    Environ Sci Technol; 2002 Apr; 36(8):1705-11. PubMed ID: 11993867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing Fe (II)-induced mineralization pathways of ferrihydrite.
    Hansel CM; Benner SG; Fendorf S
    Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.
    Stolze L; Zhang D; Guo H; Rolle M
    Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive dissolution of ferrihydrite with the release of As(V) in the presence of dissolved S(-II).
    Huang FG; Jia SY; Liu Y; Wu SH; Han X
    J Hazard Mater; 2015 Apr; 286():291-7. PubMed ID: 25590823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite.
    Boland DD; Collins RN; Miller CJ; Glover CJ; Waite TD
    Environ Sci Technol; 2014 May; 48(10):5477-85. PubMed ID: 24724707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite.
    Frierdich AJ; Scherer MM; Bachman JE; Engelhard MH; Rapponotti BW; Catalano JG
    Environ Sci Technol; 2012 Sep; 46(18):10031-9. PubMed ID: 22924460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions.
    Yang L; Steefel CI; Marcus MA; Bargar JR
    Environ Sci Technol; 2010 Jul; 44(14):5469-75. PubMed ID: 20553044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial patterns and modeling of reductive ferrihydrite transformation observed in artificial soil aggregates.
    Pallud C; Kausch M; Fendorf S; Meile C
    Environ Sci Technol; 2010 Jan; 44(1):74-9. PubMed ID: 20039736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI).
    Boland DD; Collins RN; Payne TE; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis.
    Krumina L; Lyngsie G; Tunlid A; Persson P
    Environ Sci Technol; 2017 Aug; 51(16):9053-9061. PubMed ID: 28691796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite.
    Borch T; Masue Y; Kukkadapu RK; Fendorf S
    Environ Sci Technol; 2007 Jan; 41(1):166-72. PubMed ID: 17265943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.
    ThomasArrigo LK; Mikutta C; Byrne J; Kappler A; Kretzschmar R
    Environ Sci Technol; 2017 Jun; 51(12):6897-6907. PubMed ID: 28590131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite.
    Xiao W; Jones AM; Collins RN; Waite TD
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1760-1769. PubMed ID: 29751097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.
    Bligh MW; Maheshwari P; David Waite T
    Water Res; 2017 Nov; 124():341-352. PubMed ID: 28780358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreases in Iron Oxide Reducibility during Microbial Reductive Dissolution and Transformation of Ferrihydrite.
    Aeppli M; Vranic S; Kaegi R; Kretzschmar R; Brown AR; Voegelin A; Hofstetter TB; Sander M
    Environ Sci Technol; 2019 Aug; 53(15):8736-8746. PubMed ID: 31339302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.
    Paul L; Smolders E
    Chemosphere; 2014 Sep; 111():471-7. PubMed ID: 24997954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.