These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11993867)

  • 21. Arsenic mobilization through microbially mediated deflocculation of ferrihydrite.
    Tadanier CJ; Schreiber ME; Roller JW
    Environ Sci Technol; 2005 May; 39(9):3061-8. PubMed ID: 15926553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater.
    Zhang D; Guo H; Xiu W; Ni P; Zheng H; Wei C
    J Hazard Mater; 2017 Jan; 321():228-237. PubMed ID: 27631685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Chemosphere; 2021 Jan; 263():128188. PubMed ID: 33297154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics.
    Chen C; Kukkadapu R; Sparks DL
    Environ Sci Technol; 2015 Sep; 49(18):10927-36. PubMed ID: 26260047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation.
    Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S
    Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions.
    Maithreepala RA; Doong RA
    Chemosphere; 2008 Feb; 70(8):1405-13. PubMed ID: 17963818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides.
    Stewart BD; Girardot C; Spycher N; Sani RK; Peyton BM
    Environ Sci Technol; 2013 Jan; 47(1):364-71. PubMed ID: 23163577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite.
    Boland DD; Collins RN; Glover CJ; Payne TE; Waite TD
    Environ Sci Technol; 2014 Aug; 48(16):9086-93. PubMed ID: 25014507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction.
    Ko MS; Lee S; Kim KW
    Environ Geochem Health; 2019 Feb; 41(1):461-467. PubMed ID: 29520475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides.
    Liu J; Sheng A; Li X; Arai Y; Ding Y; Nie M; Yan M; Rosso KM
    Environ Sci Technol; 2022 Mar; 56(6):3801-3811. PubMed ID: 35188748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling.
    Borer P; Sulzberger B; Hug SJ; Kraemer SM; Kretzschmar R
    Environ Sci Technol; 2009 Mar; 43(6):1864-70. PubMed ID: 19368184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.
    Lu Y; Xu L; Shu W; Zhou J; Chen X; Xu Y; Qian G
    Bioresour Technol; 2017 Jan; 224():34-40. PubMed ID: 27806884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology.
    Braunschweig J; Bosch J; Heister K; Kuebeck C; Meckenstock RU
    J Microbiol Methods; 2012 Apr; 89(1):41-8. PubMed ID: 22349079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.
    Kranzler C; Kessler N; Keren N; Shaked Y
    Environ Microbiol; 2016 Dec; 18(12):5101-5111. PubMed ID: 27516103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material.
    Amirbahman A; Schönenberger R; Furrer G; Zobrist J
    J Contam Hydrol; 2003 Jul; 64(3-4):169-90. PubMed ID: 12814879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.