These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11993867)

  • 41. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment.
    Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y
    Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mineral characterization and composition of Fe-rich flocs from wetlands of Iceland: Implications for Fe, C and trace element export.
    ThomasArrigo LK; Notini L; Shuster J; Nydegger T; Vontobel S; Fischer S; Kappler A; Kretzschmar R
    Sci Total Environ; 2022 Apr; 816():151567. PubMed ID: 34762956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Treatment of wastewater phosphate by reductive dissolution of iron: use of ferric oxyhydroxide media.
    Robertson WD; Lombardo PS
    J Environ Qual; 2011; 40(6):1955-62. PubMed ID: 22031579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergistic effect of reductive and ligand-promoted dissolution of goethite.
    Wang Z; Schenkeveld WD; Kraemer SM; Giammar DE
    Environ Sci Technol; 2015 Jun; 49(12):7236-44. PubMed ID: 25965980
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of iron-coated sand for removing soluble phosphorus from drainage water.
    Chardon WJ; Groenenberg JE; Vink JPM; Voegelin A; Koopmans GF
    Sci Total Environ; 2022 Apr; 815():152738. PubMed ID: 34974002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of incubation on solubility and mobility of trace metals in two contaminated soils.
    Ma LQ; Dong Y
    Environ Pollut; 2004 Aug; 130(3):301-7. PubMed ID: 15182963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrologic flow controls on biologic iron(III) reduction in natural sediments.
    Minyard ML; Burgos WD
    Environ Sci Technol; 2007 Feb; 41(4):1218-24. PubMed ID: 17593722
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iron oxide surface-catalyzed oxidation of ferrous iron by monochloramine: implications of oxide type and carbonate on reactivity.
    Vikesland PJ; Valentine RL
    Environ Sci Technol; 2002 Feb; 36(3):512-9. PubMed ID: 11871569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effectiveness of Ferric, Ferrous, and Aluminum (Hydr)Oxide Coprecipitation to Treat Water Contaminated with Arsenate.
    Vasques ICF; de Mello JWV; Veloso RW; Ferreira VP; Abrahão WAP
    J Environ Qual; 2018 Nov; 47(6):1339-1346. PubMed ID: 30512073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction.
    Huang JH
    Chemosphere; 2018 Mar; 194():49-56. PubMed ID: 29197249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.
    Saalfield SL; Bostick BC
    Environ Sci Technol; 2009 Dec; 43(23):8787-93. PubMed ID: 19943647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Microbial reduction ability of various iron oxides in pure culture experiment].
    Qu D; Schnell S
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):745-9. PubMed ID: 12552834
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactors.
    Roden EE; Urrutia MM; Mann CJ
    Appl Environ Microbiol; 2000 Mar; 66(3):1062-5. PubMed ID: 10698772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Association of uranium with iron oxides typically formed on corroding steel surfaces.
    Dodge CJ; Francis AJ; Gillow JB; Halada GP; Eng C; Clayton CR
    Environ Sci Technol; 2002 Aug; 36(16):3504-11. PubMed ID: 12214641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows.
    Sun J; Prommer H; Siade AJ; Chillrud SN; Mailloux BJ; Bostick BC
    Environ Sci Technol; 2018 Aug; 52(16):9243-9253. PubMed ID: 30039966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reductive dechlorination of carbon tetrachloride in aqueous solutions containing ferrous and copper ions.
    Maithreepala RA; Doong RA
    Environ Sci Technol; 2004 Dec; 38(24):6676-84. PubMed ID: 15669327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
    Luan FB; Xie L; Li J; Zhou Q
    Huan Jing Ke Xue; 2009 Jul; 30(7):1937-41. PubMed ID: 19774988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.